Mathematics for Computer Science
MIT 6.042J/18.062J

Bookkeeper Rule Multinomial Theorem

©OBO
 \# permutations of the word bookkeeper?

- \# perms bo $\boldsymbol{o}_{2} \mathbf{k}_{1} \mathbf{k}_{2} \boldsymbol{e}_{1} e_{2} p e_{3} r=10$!
- map perm $\mathbf{o}_{1} b \boldsymbol{e}_{1} \mathbf{o}_{2} \mathbf{k}_{1} \mathbf{r} \mathbf{k}_{2} \boldsymbol{e}_{2} \mathbf{p} \boldsymbol{e}_{3}$ to obeokrkepe
- 2 o's, 2 k's, 3 e's: 10! map is $2!\cdot 2!\cdot 3!-$ to- 1 $2!2!3!$

binomial coefficients

binomial a special case:

$$
\binom{n}{k}=\binom{n}{k, n-k}
$$

5im	multinomials
	What is the coefficient of EMS ${ }^{3}$ TY in the expansion of $(E+M+S+T+Y)^{7} ?$
	The number of ways to rearrange the letters in the word SYSTEMS

applying the BOOKKEEPER rule
What is the coefficient of
EMS ${ }^{3} T Y$
in the expansion of
$(E+M+S+T+Y)^{7}$?
$\binom{7}{1,1,3,1,1}$
multinomial coefficients
What is the coefficient of $B A^{3} N^{2}$ in the expansion of

$$
(B+A+N)^{6} ?
$$

The number of ways to rearrange the letters in the word

BANANA
Albert R Meyer, April 22, 2013
multinomial coefficients
What is the coefficient of $B A^{3} N^{2}$ in the expansion of

$$
(B+A+N)^{6} ?
$$

$$
\binom{6}{1,3,2}
$$

bookkeeper. 11

The Multinomial Formula

$$
\begin{aligned}
& \left(X_{1}+X_{2}+\ldots+X_{k}\right)^{n}= \\
& \sum_{r_{1}+\cdots+r_{k}=n}\binom{n}{r_{1}, r_{2}, r_{3}, \ldots, r_{k}} X_{1}^{r_{1}} X_{2}^{r_{2}} X_{3}^{r_{3}} \ldots X_{k}^{r_{k}}
\end{aligned}
$$

multinomial coefficients

What is the coefficient of $X_{1}^{r_{1}} X_{2}^{r_{2}} X_{3}^{r_{3}} \cdots X_{k}^{r_{k}}$ in the expansion of

$$
\left(X_{1}+X_{2}+X_{3}+\ldots+X_{k}\right)^{n} ?
$$

bookkeeper. 13
multinomial coefficients

$$
\begin{aligned}
& \binom{n}{r_{1}, r_{2}, r_{3}, \ldots, r_{k}} \\
& :=0 \quad \text { if } r_{1}+r_{2}+\ldots+r_{k} \neq n
\end{aligned}
$$

@.
Albert R Meyer, April 22, 2013
bookkeeper. 15


```
Preceding slides adapted from:
Great Theoretical Ideas In Computer Science Carnegie Mellon Univ., CS 15-251, Spring 2004 Lecture 10 Feb 12, 2004 by Steven Rudich
Applied Combinatorics, by Alan Tucker

MIT OpenCourseWare
http://ocw.mit.edu

\subsection*{6.042J / 18.062J Mathematics for Computer Science}

Spring 2015

For information about citing these materials or our Terms of Use, visit: hhttp://ocw.mit.edu/terms.```

