

Polynomials Express Choices \& Outcomes

Image by MIT OpenCourseWare.
Products of Sums $=$ Sums of Products
@(O)๔ Albert R Meyer, April 18, 2012

$$
\begin{aligned}
& \text { expression for } c_{k} \text { ? } \\
& \begin{array}{l}
(1+X)^{n} \quad n \text { times } \\
=(1+X)(1+X)(1+X)(1+X) \ldots(1+X)
\end{array}
\end{aligned}
$$

multiplying gives 2^{n} product terms:
$11 \cdots 1+X 11 X \cdots X 1+1 X X \cdots 1 X 1+\cdots+X X \cdots$ a term corresponds to selecting 1 or X from each of the n factors
@(O) Albert R Meyer, April 18, 2012

expression for c_{k} ?

$(1+X)^{n} \quad n$ times
$=(1+X)(1+X)(1+X)(1+X) \ldots(1+X)$ the X^{k} coeff, c_{k}, is \# terms with exactly $k X$'s selected

$$
c_{k}=\binom{n}{k}
$$

The Binomial Formula

$$
(X+Y)^{n}=
$$

$$
\binom{n}{0} y^{n}+\binom{n}{1} x y^{n-1}+\binom{n}{2} x^{2} y^{n-2}+
$$

$$
\ldots+\binom{n}{k} x^{k} y^{n-k}+\ldots+\binom{n}{n} x^{n}
$$

$$
\text { Albert R Meyer, April 18, } 2012
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit: hhttp://ocw.mit.edu/terms.

