

Albert R Meyer,

April 17, 2013

bijectcount.2

@000

Counting Passwords
L ::= {
$$a,b,...,z,A,B,...,Z$$
}
D ::= { $0,1,...,9$ }
P_n ::= length n words
starting w/letter
= L × (L U D)ⁿ⁻¹

Counting Passwords

$$|L \times (L \cup D)^{n-1}|$$

$$= |L| \cdot |(L \cup D)|^{n-1}$$

$$= |L| \cdot (|L| + |D|)^{n-1}$$

$$= 52 \cdot (52 + 10)^{n-1}$$

4-digit nums w/
$$\geq$$
 one 7
cases by 1st occurrence of 7:
x: any digit o: any digit \neq 7
7xxx or o7xx or oo7x or ooo7
 $10^3 + 9 \cdot 10^2 + 9^2 \cdot 10 + 9^3$
= 3439

at least one 7: another way
[4-digit nums w/
$$\geq$$
 one 7]
= [4-digit nums]
- [those w/ no 7]
= $10^4 - 9^4 = 3439$

Bijection: $\mathcal{P}(A)$ and Binary Strings **A**: $\{a_1, a_2, a_3, a_4, a_5, \dots, a_n\}$ subset: $\{a_1, a_3, a_4, \dots, a_n\}$ string: 1 0 1 1 0 ... 1 This is a bijection, so $|n-bit binary strings| = |\mathcal{P}(A)|$ @ 080 Albert R Meyer April 17, 2013 bijectcount.10

MIT OpenCourseWare http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.