
Def: $f(n) \sim g(n)$

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1
$$

©®(1) Albert R Meyer, April 10, 2013

transitivity of ~ Suppose $f \sim g$ and $g \sim h$, prove $f \sim h$.

$$
1=\lim \frac{f}{g}=\lim \frac{\left(\frac{f}{h}\right)}{\left(\frac{g}{h}\right)}=\frac{\lim \left(\frac{f}{h}\right)}{1}
$$

Asymptotic Equivalence \sim
Corollary: \sim is an
equivalence relation

Big Oh: O(•)
Asymptotic Order of Growth:
$f=O(g)$
$\limsup _{n \rightarrow \infty}\left(\frac{f(n)}{g(n)}\right)<\infty$
a technicality -ignore now

Asymptotics: Intuitive Summary	
$f \sim g:$	$f \& g$ nearly equal
$f=O(g):$	f much less than g
$f=O(g):$	froughly $\leq g$
$f=O(g):$	froughly equal g

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

