Mathematics for Computer Science MIT 6.042J/18.062J

Trees

(c) B (9)(2) Albert R Meyer, April 8, 2013 ee-def. 1

Cycles in simple graphs length >2 implies that going back \& forth over an edge is not a cycle

cc) (®) Albert R Meyer, April 8,2013 tree-def. 3

Cycles in simple graphs A cycle is a closed walk of length >2 that doesn't cross itself:

(c) (1) (9)(2) Albert R Meyer, April 8, 2013

Trees

A tree is a connected graph with no cycles.

cc) $(1)(6)$
c) ©(9)

Albert R Meyer, April 8,2013

Come up all the time

- family trees
- search trees
- game trees
- parse trees
- spanning trees
(c) (1)(9)(2) Albert R Meyer, April 8, 2013

Find ${ }^{\text {B }}$ Focus on "pure" trees
unordered, unrooted, undirected

- complete
- complete
- ordered
- binary
An edge is a cut edge if
removing it from the graph
disconnects two vertices.
@®®®

e is a cut edge

䟧制 Cut Edges

deleting e gives two components
(c) $\odot(\odot)$

Cut Edges

f is not a cut edge
(c) $1(9)()^{2}$ Abert R Meyer, April 8, 2013 tree-def. 14

So a connected graph is 2-edge connected iff it has no cut edge.

still connected with edge f deleted

Albert R Meyer, April 8, 2013

Cut Edges and Cycles
Lemma: An edge is a not a cut edge iff it is on a cycle.

[^0]

- connected graph with n vertices and $n-1$ edges
- an edge-maximal acyclic graph
- graph with a unique path between any 2 vertices

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

[^0]: cc (1) (3)

