

Counting in Probability

What is the probability of getting exactly two jacks in a poker hand?

$$
\begin{gathered}
\text { Probability: } 1 \text { st Idea } \\
\text { - A subset of outcomes is an } \\
\text { event } \\
\text { - The probability of an event: } \\
\operatorname{Pr}\left[\text { event]::= } \frac{\text { \# outcomes in event }}{\text { total \# outcomes }}\right.
\end{gathered}
$$

踢: Analyzing Monty Hall

Marilyn Vos Savant explained Game in magazine -- bombarded by letters (even from PhD's) debating:

1) sticking \& switching equally good
2) switching better

Analyzing Monty Hall

Determine the outcomes.
-- using a tree of possible steps can help

Monty Hall STICK strategy

Win by sticking iff
Lose by switching

STICK Lose: 6

Wins: 6

```
    Analyzing Monty Hall
    A false conclusion:
    sticking and switching have
    same # winning outcomes, so
    probability of winning
    is the same for both: 1/2.
```

 Analyzing Monty Hall
 Another false argument:
 after door opening, 1 goat
 and 1 prize are left.

Analyzing Monty Hall

A false conclusion:
sticking and s it hing have same \# w ni in, sutc mes, so probability of wiming is the same for both: $1 / 2$.

Analyzing Monty Hall

 Another false argument: after door opening, 1 goat and 1 prize are left. Each door is equally likely to have the prize (by symmetry), so both strategies win with probability: $1 / 2$.
: Analyzing Monty Hall
 Another false argument: after door opening, 1 goat and 1 pri are Ctt. Each door is e uall kely to have the prize (by symmetry), so both strategies win with probability: $1 / 2$.

\qquad

Analyzing Monty Hall

What's wrong?

Let's look at the outcome tree more carefully.

Probability: 2nd Idea

Outcomes may have differing probabilities! Not always uniform.

```
probintro 24
Finding Probability
    4. Compute event probabilities
```


Finding Probability

Intuition is important but dangerous.
Stick with 4-part method:

1. Identify outcomes (tree helps)
2. Identify event (winning)
3. Assign outcome probabilities
4. Compute event probabilities
Intuition is important but dangerous.
Stick with 4-part method:
5. Identify outcomes (tree helps)
6. Identify event (winning)
7. Assign outcome probabilities
8. Compute event probabilities
Intuition is important but dangerous.
Stick with 4-part method:
9. Identify outcomes (tree helps)
10. Identify event (winning)
11. Assign outcome probabilities
12. Compute event probabilities
Intuition is important but dangerous.
Stick with 4-part method:
13. Identify outcomes (tree helps)
14. Identify event (winning)
15. Assign outcome probabilities
16. Compute event probabilities
Intuition is important but dangerous.
Stick with 4-part method:
17. Identify outcomes (tree helps)
18. Identify event (winning)
19. Assign outcome probabilities
20. Compute event probabilities
Intuition is important but dangerous.
Stick with 4-part method:
21. Identify outcomes (tree helps)
22. Identify event (winning)
23. Assign outcome probabilities
24. Compute event probabilities

Albert R Meyer, May 1,2013

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

