
        

        

 
 

 

  

ZF.1Albert R Meyer, March 4, 2015 

Mathematics for Computer Science 
MIT 6.042J/18.062J 

Set Theory: 
ZFC 

Zermelo-Frankel Set Theory 

Axioms of Zermelo-Frankel 
with the Choice axiom 
(ZFC) define the standard 
Theory of Sets 
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ZF.3Albert R Meyer, March 4, 2015 

Some Axioms of Set Theory 

Extensionality 
x and y have the same elements 
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Some Axioms of Set Theory 

∀x[x ∈ y IFF x ∈ z] 
Extensionality 

iff 
x and y are members of the 
same sets 
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Some Axioms of Set Theory 

∀x[x ∈ y IFF x ∈ z] 
Extensionality 

iff 
∀x[y ∈ x IFF z ∈ x] 
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Some Axioms of Set Theory 

Power set 

∀x∃p∀s.s ⊆ x IFF s ∈ p 
Every set has a power set 
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Some Axioms of Set Theory 

Comprehension 
If S is a set, and P(x) is a 
predicate of set theory, 
then 

is a set 
{x ∈ s|  P(x)}  
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According to ZF, the elements 
of a set have to be “simpler” 
than the set itself. In 
particular, 

no set is a member of itself, 
or a member of a member… 

Sets are Well Founded 

2 



        

        

 

  

 

  

  
 

ZF.9Albert R Meyer, March 4, 2015 

Def:  x is ∈-minimal in y 

x is in y, but no element 
of x is in y 

Sets are Well Founded 
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x ∈ y AND 

[∀z.z ∈ x IMPLIES z ∉ y] 

Def:  x is ∈-minimal in y 

Sets are Well Founded 
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Some Axioms of Set Theory 

Foundation 
Every nonempty set has 
an ∈-minimal element 
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Some Axioms of Set Theory 

Foundation 

∀x.[x ≠ ∅  IMPLIES 

∃y.y is ∈ -minimal in x] 

Every nonempty set has 
an ∈-minimal element 
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S ∉ S 
Let R::= {S}. 
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S ∉ S 
Let R::= {S}. If S ∈ S, then 
R has no ∈-minimal element. 
If it exists, it must be S, 
but S ∈ R and S ∈ S, 
so S is not ∈-minimal in R. 
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S ∉ S implies that 
(1) the collection of all sets is not 

a set, and 
(2) 

Zermelo-Frankel Set Theory 

W = s ∈Sets|s ∉∉s{ } 
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S ∉ S implies that 
(1) the collection of all sets is not 

a set, and 
(2) is the 

collection of all sets -- which is 
why it’s not a set. 

Zermelo-Frankel Set Theory 

W = s ∈Sets|s ∉∉s{ } 
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