

Congruence mod n Def: $a \equiv b(\bmod n)$ iff $n \mid(a-b)$
example: $30 \equiv 12(\bmod 9)$
since
9 divides $(30-12)$
© (1) (0)
Albert R Meyer, March 9,2015 \qquad

```
Remainder Lemma
    a\equivb(mod n)
        iff
    rem(a,n) = rem(b,n)
    example: 30 \equiv12(mod 9)
    since
rem}(30,9)=3=\operatorname{rem}(12,9
```


(c) (1) (2) Abert R Meyer. March 9, 2015

$$
\begin{aligned}
& \text { proof: }(\Leftarrow) \\
& a=q_{a} n+r_{a, n} \\
& b=q_{b} n+r_{b, n} \\
& \text { if rem's are }=\text {, then } \\
& a-b=\left(q_{a}-q_{b}\right) n \text { so } n \mid(a-b)
\end{aligned}
$$


```
Mamainder Lemma
    l
                QED
(1) ()
Albert R Meyer, March 9, 2015

> Corollaries symmetric
> \(a \equiv b(\bmod n)\) implies \(b \equiv a(\bmod n)\)
> transitive \(a \equiv b \& b \equiv c(\bmod n)\) implies \(a \equiv c(\bmod n)\)
> © (1) (0) Albert R Meyer, March 9,2015 ngruence 12

Cind Congruence mod \(n\) If \(a \equiv b(\bmod n)\), then \(a+c \equiv b+c(\bmod n)\) pf: \(n\) | ( \(a-b\) ) implies \(n \mid((a+c)-(b+c))\)
```

Congruence mod n
If a\equivb (mod n), then
a}c\equivb\cdotc(\operatorname{mod}n
pf: n| (a-b) implies
n | (a-b)\cdotc, and so
n| ((a\cdotc)-(b\cdotc))

```
Cidididinence mod \(n\)
Cor: If \(a \equiv a^{\prime}(\bmod n)\),
then replacing a by \(a^{\prime}\)
in any arithmetic
formula gives an
    \(\equiv(\bmod n)\) formula

> Congruence mod \(n\)
> Corollary:
> If \(a \equiv b(\bmod n) \&\) \(c \equiv d(\bmod n)\),
> then \(a \cdot c \equiv b \cdot d(\bmod n)\)

Congruence mod \(n\)
So arithmetic \((\bmod n)\) a lot like ordinary arithmetic
\begin{tabular}{l} 
Remainder arithmetic \\
important: congruence \& \\
\(a \equiv \operatorname{rem}(a, n)(\bmod n)\) \\
keeps \((\bmod n)\) arithmetic \\
in the remainder range \\
{\([0, n)\)} \\
an
\end{tabular} .
Remainder arithmetic
example: \(287^{9} \equiv ?(\bmod 4)\)
\begin{tabular}{rl}
\(287^{9}\) & \(\equiv 3^{9}\) since \(r_{287,4}=3\) \\
& \(=\left(\left(3^{2}\right)^{2}\right)^{2} \cdot 3\) \\
& \(\equiv\left(1^{2}\right)^{2} \cdot 3\) since \(r_{9,4}=1\) \\
& \(=3(\bmod 4)\)
\end{tabular}

MIT OpenCourseWare
http://ocw.mit.edu

\subsection*{6.042J / 18.062J Mathematics for Computer Science}

Spring 2015

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.```

