

Calculating Variance		
	$Var[aR + b] = a^2 Var[R]$	
	$Var[R] = E[R^{2}] - (E[R])^{2}$	
		-1
0080	Albert R Meyer, May 10, 2013	variance.3

Variance of Time to Failure

$$Pr[F = k] = q^{k-1}p$$

 $Var[F] = E[F^2] - E^2[F]$
 $F = 1, 2, 3, ..., k, ...$
 $F^2 = 1, 4, 9, ..., k^2, ...$

Space Station Mir
Destructs with probability p
in any given hour

$$E[F] = 1/p$$
 (Mean Time to Fail)
 $Var[F] = ?$

Variance of Time to Failure

$$E[F^{2}] ::= \sum_{\substack{k=1 \\ k=1}}^{\infty} k^{2} \cdot Pr[F^{2} = k^{2}]$$

$$= \sum_{\substack{k=1 \\ q}}^{\infty} k^{2} \cdot Pr[F = k]$$

$$= \frac{p}{q} \sum_{\substack{k=0 \\ k=0}}^{\infty} k^{2} q^{k}$$
has closed form

Conditional time to failure
lemma: For
$$F =$$
 time to
failure, $g : \mathbb{R} \to \mathbb{R}$,
 $E[g(F) | F > n]$

Conditional time to failure lemma: For F = time to failure, $g : \mathbb{R} \to \mathbb{R}$, E[g(F) | F > n] = E[g(F + n)]Corollary: $E[F^2 | F > 1] = E[(F + 1)^2]$

Variance of Time to Failure
total expectation
$$E[F^2] =$$

approach:
 $E[F^2 | F = 1] \cdot Pr[F = 1]$
 $+ E[F^2 | F > 1] \cdot Pr[F > 1]$

Variance of Time to Failure
total expectation
$$E[F^2] =$$

approach:
 $1 \cdot p$
+ ($E[F^2] + 2/p + 1$)
 $\cdot q$
now solve for $E[F^2]$

Variance of Time to Failure
total expectation
$$E[F^2] =$$

approach:
 $1 \cdot p$
 $+E[(F+1)^2] \cdot q$

Mean Time to Failure

$$Var[F] = \frac{1}{p} \left(\frac{1}{p} - 1\right)$$
Mir1:

$$p = 10^{-4}, E[F] = 10^{4}, \sigma < 10^{4}$$
so by Chebyshev

$$Pr[lasts \ge 4 \ 10^{4} \ hours] \le 1/4$$

6.042J / 18.062J Mathematics for Computer Science Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.