

Fundamental Thm. of Arithmetic
Every integer > 1 factors uniquely into a weakly decreasing sequence of primes
Unique Prime Factorization
Example:
$61394323221=$
$53 \cdot 37 \cdot 37 \cdot 37 \cdot 11 \cdot 11 \cdot 7 \cdot 3 \cdot 3 \cdot 3$

Prime Divisibility

Cor :If p is prime, and $p_{1} a_{1} \cdot a_{2} \cdot \cdots \cdot a_{m}$ then pla for some i. pf : by induction on m .

Unique Prime Factorization

pf: suppose not. choose smallest $n>1$:
$n=p_{1} \cdot p_{2} \cdots p_{k}=q_{1} \cdot q_{2} \cdots q_{m}$
$p_{1} \geq p_{2} \geq \cdots \geq p_{k}$
$q_{1} \geq q_{2} \geq \cdots \geq q_{m}$
If $q_{1}=p_{1}$, then $p_{2} \cdots p_{k}=q_{2} \cdots q_{m}$ is smaller nonunique.

Unique Prime Factorization Every integer $n>1$ has a unique factorization into primes: $p_{1} \cdot \cdots \cdot p_{k}=n$ with $p_{1} \geq p_{2} \geq \cdots \geq p_{k}$

Unique Prime Factorization
pf: suppose not. choose smallest $n>1$:
$n=p_{1} \cdot p_{2} \cdots p_{k}=q_{1} \cdot q_{2} \cdots q_{m}$
$p_{1} \geq p_{2} \geq \cdots \geq p_{k}$
$q_{1} \geq q_{2} \geq \cdots \geq q_{m}$
So can assume $q_{1}>p_{1} \geq p_{i}$
Unique Prime Factorization
pf: but $q_{1} \mid n=p_{1} \cdot p_{2} \cdots p_{k}$
so $q_{1} \mid p_{i}$ for some i by Cor,
contradicting that $q_{1}>p_{i}$
QED
and

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

