Uniform Random Variables

MIT 6.042J/18.062J

Random Variables Uniform, Binomial

©(O)
Albert R Meyer May 6, 2013
binom-uniform. 1
..all values equally likely
"threshold" variable was uniform:

$$
\begin{aligned}
\operatorname{Pr}[Z=0] & =\cdots=\operatorname{Pr}[Z=6] \\
& =\frac{1}{7}
\end{aligned}
$$

Uniform Distribution

$\operatorname{Pr}[:=$ outcome of fair die roll
$S: D=1]=\operatorname{Pr}[D=2]=\cdots=\operatorname{Pr}[D=6]=1 / 6$
$\operatorname{Pr}[S=0000]=\operatorname{Pr}[S=0001]=\cdots$
$=\operatorname{Pr}[S=9999]=1 / 10000$

[^0]
Equal Pairs of Uniform Variables

R_{1} is independent of $\left[R_{2}=R_{3}\right]$ \& has probability p of equaling each value So it equals a common value of $R_{2} \& R_{3}$ with probability p That is,

$$
\operatorname{Pr}\left[R_{1}=R_{2} \mid R_{2}=R_{3}\right]=\operatorname{Pr}\left[R_{1}=R_{2}\right]=p
$$

Binomial Random Variable

$B_{n, p}:=$ \# heads in n mutually indep flips.
Coin may be biased. So 2 parameters
$n::=$ \# flips, $p::=\operatorname{Pr}\{h e a d\}$
for $n=5, p=2 / 3$
$\operatorname{Pr}[\mathrm{HHTTH}]=$

$$
\frac{2}{3} \cdot \frac{2}{3} \cdot \frac{1}{3} \cdot \frac{1}{3} \cdot \frac{2}{3}
$$

Binomial Random Variable

$B_{n, p}:=$ \# heads in n mutually indep flips.
Coin may be biased. So 2 parameters
$n::=\#$ flips, $p::=\operatorname{Pr}\{h e a d\}$
for $n=5, p=2 / 3$
$\operatorname{Pr}[\mathrm{HHTTH}]=$
$\operatorname{Pr}[\mathrm{H}\} \cdot \operatorname{Pr}[\mathrm{H}] \cdot \operatorname{Pr}[\mathrm{T}] \cdot \operatorname{Pr}[\mathrm{T}] \cdot \operatorname{Pr}[\mathrm{H}]$
(by independence)

Binomial Random Variable

$B_{n, p}::=$ \# heads in n mutually indep flips.
Coin may be biased. So 2 parameters

$$
n::=\# \text { flips, } p::=\operatorname{Pr}\{h e a d\}
$$

$$
\begin{aligned}
& \left.B_{n, p}=i \quad\right]=\# \text { seq's } \operatorname{pr}\{\text { seq }\} \\
& \binom{n}{i} p^{i}(1-p)^{n-i} \\
& \text { Albert R Meerer } \\
& \text { Meq6,2013 }
\end{aligned}
$$

Binomial Random Variable

$B_{n, p}::=$ \# heads in n mutually indep flips. Coin may be biased. So 2 parameters $n::=\#$ flips, $p::=\operatorname{Pr}\{h e a d\}$ $\operatorname{Pr}[$ get i H's, n-i T's] = \#seq's pr[seq]

$$
\binom{n}{i} p^{i}(1-p)^{n-i}
$$

```
識離 Density & Distribution
Probability Density Function
of random variable R,
    PDF (a) ::= Pr[R = a]
SO
    PDF
    for v in range of uniform }
03(%)
Albert R Meyer
```

Density \& Distribution
Key observation:
The Probability Density \&
Cumulative Distribution
Functions of R, do not
depend on the sample space
Density \& Distribution
Key observation:
The Probability Density \&
e
Albert R Meyer May 6,2013
binom-uniform. }1

```

Density \& Distribution
Probability Density Function of random variable \(R\), \(P D F_{R}(a)::=\operatorname{Pr}[R=a]\) Cumulative Distribution
\[
\operatorname{CDF}_{R}(a)::=\operatorname{Pr}[R \leq a]
\]
@(®)

\author{
Abert R Meyer May 6, 2013
}
\(\qquad\)

MIT OpenCourseWare
http://ocw.mit.edu

\subsection*{6.042J / 18.062J Mathematics for Computer Science}

Spring 2015

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.```


[^0]:    Equal Pairs of Uniform Variables Lemma. If $R_{1}, R_{2}, R_{3}$ have the same range, are mutually independent, and $R_{1}$ is uniform, then

    $$
    \left[R_{1}=R_{2}\right],\left[R_{2}=R_{3}\right],\left[R_{1}=R_{3}\right]
    $$

    are pairwise independent. Obviously NOT 3-way indep.

