The Ring \mathbb{Z}_{n}

```
Just Remainders
\[
\begin{aligned}
& i+j\left(\mathbb{Z}_{n}\right) \quad::=\operatorname{rem}(i+j, n) \\
& i \cdot j\left(\mathbb{Z}_{n}\right) \quad::=\operatorname{rem}(i \cdot j, n)
\end{aligned}
\]
```

The integer interval $[0, n)$ under,$+ \cdot\left(\mathbb{Z}_{n}\right)$ is called \mathbb{Z}_{n} the ring of integers mod n

Rules for \mathbb{Z}_{n}	
($i+j)+k=i+(j+k)$ associativity $0+i=i$ identity $i+(-i)=0$ inverse $i+j=j+i$ commutativity	

Rules for \mathbb{Z}_{n}
no cancellation rule

$$
\begin{array}{lll}
3 \cdot 2=8 \cdot 2 & \left(\mathbb{Z}_{10}\right) \\
3 & \neq 8 & \left(\mathbb{Z}_{10}\right)
\end{array}
$$

$$
\text { Albert R Meyer March 11, } 2013
$$

$$
\mathrm{Zn} .10
$$

$\begin{aligned} & \quad \mathbb{Z}_{n}^{*}::= \text { elements of } \mathbb{Z}_{n} \\ & \text { relatively prime to } n \\ & i \in \mathbb{Z}_{n}^{*} \text { IFF } \text { gcd }(i, n)=1 \\ & \text { IFF } i \text { is cancellable in } \mathbb{Z}_{n} \\ & \text { IFF } i \text { has an inverse in } \mathbb{Z}_{n} \\ &\end{aligned}$

Lemma 2
For $i, j \in \mathbb{Z}_{n^{\prime}}$
$i, j \in \mathbb{Z}_{n}^{*}$ IFF $i \cdot j \in \mathbb{Z}_{n}^{*}$

Lemma 1

$$
\begin{aligned}
& \qquad|\mathrm{kS}|=|\mathrm{S}| \\
& \text { proof: } \\
& s_{1} \neq s_{2} \text { IMPLIEs } \mathrm{ks}_{1} \neq \mathrm{ks}_{2} \\
& \text { since } \mathrm{k} \text { is cancellable }
\end{aligned}
$$

$\begin{array}{llllllll} & \text { permuting } \mathbb{Z}_{9} \\ \mathbb{Z}_{9}^{*}= & 1 & 2 & 4 & 5 & 7 & 8 \\ 2 & 2 & 4 & 8 & 1 & 5 & 7\end{array}$

$\Pi \mathbb{Z}_{n}^{*}=\Pi k \mathbb{Z}_{n}^{*}$

$$
=k^{\circ(n)} \Pi \mathbb{Z}_{n}^{*}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

