MIT 6.042J/18.062J

GCD's \& linear combinations: The Pulverizer

GCD is a linear combination
Corollary:
The multiples of $\operatorname{gcd}(a, b)$
are exactly the linear
combinations of a and b.

GCD is a linear combination
Theorem:
$\operatorname{gcd}(a, b)$ is an integer linear combination of a and b.

$$
\operatorname{gcd}(a, b)=s a+t b
$$

```
gcd(a,b)=sa+tb
    Proof: Show how to find coefficients s,t.
Method: apply Euclidean algorithm, finding coefficients as you go.
```

Albert R Meyer March 6, 2015
\quad Extending Euclid
In Euclid have
$\quad g c d(x, y)=g c d(a, b)$.
Track $c o e f f$'s c, d, e, f
$c a+d b=x$ and ea+fb $=y$
\quad Extending Euclid
In Euclid have
$\quad g c d(x, y)=g c d(a, b)$.
Track coeff's c, d, e, f
$c a+d b=x$ and $e a+f b=y$
to start:
$y=b=0 a+1 b$

Extending Euclid
$x_{\text {next }}=y=e a+f b$
$y_{\text {next }}=r e m(x, y)=$
$x-q y=$
$c a+d b-q(e a+f b)$

\quad Finding $s>0$ and t
gcd $(899,493)=-6.899+11 \cdot 493$
get positive coeff. for $899 ?:$
$=(-6+493 \mathrm{k}) \cdot 899+(11-899 \mathrm{k}) \cdot 493$
let k be $1:$
$=487.899-888.493$

Pulverizer is efficient			
$\begin{aligned} & \text { Sar } \\ & \text { Euc } \end{aligned}$	noer	f tra	S as

[^0]MIT OpenCourseWare
https://ocw.mit.edu
6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: Pulverizer is efficient Same number of transitions as Euclid, a few more adds/mults per transition.
 So halts after at most
 $10 \log _{2} b$ operations

