

Mutual Independence Events $A_{1}, A_{2}, \ldots, A_{n}$ are mutually independent when the probability that A_{i} occurs is unchanged by which other ones occur.

```
Mutual Independence Events \(A_{1}, A_{2}, \ldots, A_{n}\) are mutually independent when the probability that \(A_{i}\) occurs
```

[^0]Mutual Independence
Events $A_{1}, A_{2}, \ldots, A_{n}$ are
mutually independent
when
$\operatorname{Pr}\left[A_{i}\right]=\operatorname{Pr}\left[A_{i} \mid A_{j} \cap A_{k} \cap \cdots \cap A_{m}\right]$
$\quad(i \neq j, k, \ldots, m)$

Mutual Independence

 Events $A_{1}, A_{2}, \ldots, A_{n}$ are mutually independent when$$
\begin{aligned}
& \operatorname{Pr}\left[A_{i} \cap A_{j} \cap \cdots \cap A_{m}\right]= \\
& \operatorname{Pr}\left[A_{i}\right] \cdot \operatorname{Pr}\left[A_{j}\right] \cdots \operatorname{Pr}\left[A_{m}\right]
\end{aligned}
$$

Pairwise Independence
Example: Flip a fair coin twice
O is independent of H_{1} :
$O=\{H T, T H\}, \quad \operatorname{Pr}[O]=1 / 2$
$O \cap H_{1}=\{H T\}, \quad \operatorname{Pr}[\{H T\}]=1 / 4$
$\operatorname{Pr}\left[\mathrm{O} \cap \mathrm{H}_{1}\right]=1 / 4=\operatorname{Pr}[\mathrm{O}] \cdot \operatorname{Pr}\left[\mathrm{H}_{1}\right]$

Not Mutually Independent
Example: Flip a fair coin twice But $\mathrm{O}, \mathrm{H}_{1}, \mathrm{H}_{2}$ not mutually independent:

$$
\operatorname{Pr}\left[\mathrm{O} \mid \mathrm{H}_{1} \cap \mathrm{H}_{2}\right]=\mathrm{O} \neq \operatorname{Pr}[\mathrm{O}]
$$

$$
\text { Albert R Meyer, May 3, } 2013 \quad \text { mutualindep. } 12
$$

k-way Independence
Events A_{1}, A_{2}, \ldots are k-way independent iff any k of them are mutually independent.

Pairwise $=2$-way

蹋: kay Independence

Example: Flip a fair coin k times
$H_{i}::=$ [Head on $i^{\text {th }}$ flip]
O ::= [Odd \# Heads]
Claim: Any set of k of these events are mutually independent, but all k+1 of them are not.

$$
\begin{gathered}
\text { k-way Independence } \\
\text { Events } A_{1}, A_{2}, \ldots \text { are } \\
\text { k-way independent } \\
\text { iff any } k \text { of them are } \\
\text { mutually independent. } \\
O, H_{1}, \ldots, H_{k} \text { are k-way, } \\
\text { not }(k+1) \text {-way independent }
\end{gathered}
$$

```
%:"?
Events }\mp@subsup{A}{1}{},\mp@subsup{A}{2}{},\ldots,\mp@subsup{A}{n}{}\mathrm{ are
mutually independent
when they are n-way independent
[ (2n-(n+1) equations}\mp@code{to check!
@(0)
    Albert R Meyer, May 3, 2013
```

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

[^0]: Mutual Independence
 Example: Successive coin flips $H_{\mathrm{i}}::=$ [${ }^{\text {th }}$ flip is Heads]
 What happens on the $5^{\text {th }}$ flip is independent of what happens on the $1^{\text {st }}, 4^{\text {th }}$, or $7^{\text {th }}$ flip:

 $$
 \operatorname{Pr}\left[\mathrm{H}_{5}\right]=\operatorname{Pr}\left[\mathrm{H}_{5} \mid \mathrm{H}_{1} \cap \mathrm{H}_{4} \cap \mathrm{H}_{7}\right]
 $$

