


```
*) Euler \phi function
gcd1{n}::=
    {k\in[0,n)| gcd(k,n)=1}
gcd1{7} = {1,2,3,4,5,6}
gcd1{12} =
{0,1,2,3,4,5,6,7,8,9,10,11}
```

```
#uler \phi function
gcd1{n} ::=
    {k\in[0,n)| gcd(k,n)=1}
        \phi(7) = 6
gcd1{12} =
{0,1,2,3,4,5,6,7,8,9,10,11}
```

Euler ϕ function
$\operatorname{gcd1}\{n\}::=$
$\{k \in[0, n) \mid \operatorname{gcd}(k, n)=1\}$
$\phi(7)=|\{1,2,3,4,5,6\}|$
$\operatorname{gcd} 1\{12\}=$
$\{0,1,2,3,4,5,6,7,8,9,10,11\}$
Euler ϕ function
$\operatorname{gcd1\{ n\} }::=$
$\{k \in[0, n) \mid \operatorname{gcd}(k, n)=1\}$
$\phi(7)=6$
$\phi(12)=$
$\{1, \quad 5,7$,
gcd1\{n\}::=
$\{k \in[0, n) \mid \operatorname{gcd}(k, n)=1\}$
$\phi(7)=6$
$\phi(12)=$
$\mid\{1,5,7,11\}$

$$
\begin{aligned}
& \text { Euler } \phi \text { function } \\
& \text { gcd1\{n\} ::= } \\
& \{k \in[0, n) \mid \operatorname{gcd}(k, n)=1\} \\
& \phi(7)=6 \\
& \phi(12)=4
\end{aligned}
$$

```
Calculating }
\phi(9)? 0,1,2,3,4,5,6,7,8
k rel. prime to 9 iff
k rel. prime to 3
3 divides every 3rd number
    so, \phi(9) = 9-(9/3)=6
```


Calculating ϕ

If p prime, everything in $[1, p)$ is rel. prime to p, so

$$
\phi(p)=p-1
$$

Calculating $\phi\left(p^{k}\right)$
$0,1, \ldots, p, \ldots, 2 p, \ldots . ., p^{k}-p, \ldots, p^{k}-1$
p divides every pth number
p^{k} / p of these numbers are not rel. prime to p^{k}

Calculating $\phi\left(p^{k}\right)$
SO

$$
\phi\left(p^{k}\right)=p^{k}-p^{k} / p
$$

So

$$
\phi\left(p^{k}\right)=p^{k}-p^{k-1}
$$

Calculating $\phi\left(p^{k}\right)$
$3(1)$

$$
\text { Albert R Meyer March 9, } 2012
$$

```
#*****)}\mathrm{ Calculating }\phi(a\cdotb
Lemma:
    Fora, b relatively prime,
    \phi(a\cdotb)=\phi(a)\cdot\phi(b)
    pf: Pset 5. Another
    way later by "counting."
```

$$
\begin{aligned}
& \text { Calculating } \phi(a \cdot b) \\
& =(12)=\phi(3 \cdot 4) \\
& =(3-1) \cdot\left(2^{2}-2^{2-1}\right) \\
& =2 \cdot(4-2)=4
\end{aligned}
$$

E Euers Therere
For k relatively
prime to,
$k^{\phi}(n) \equiv 1(\bmod n)$

MIT OpenCourseWare
https://ocw.mit.edu
6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

