What the mean means

The mean value of a fair die roll is 3.5 , but we will never roll 3.5 . So why do we care what the mean is?
We believe that after many rolls, the average roll will be near 3.5.
©(O) Albert R Meyer, May 13, 2013 largenumbers.2

[^0]Dice Rolls
n rolls of fair die
$\quad \operatorname{Pr}\left[\right.$ roll 6] $=\frac{1}{6}$
Avg \#6's $::=$
$\frac{\# 6 \text { 's rolled }}{n}$
\quad Dice Rolls
n rolls of fair die
of course, an unlucky average
might be way off, but that's
unlikely. how unlikely?
$\# 6$'s rolled $\frac{1}{6}$ as $n \rightarrow \infty$

	$\operatorname{Pr}[$ Average $=1 / 6 \pm \%$]			
	n	$\pm 10 \%$	$\pm 5 \%$	Pr bigger with \# rolls
		0.4	0.4	
	60	0.26	0.14	
	600	0.72	0.41	
	1200		0.56	
	3000	0.98	0.78	
	6000	0.999	0.91	
@	Pr smaller for better \%			

n $\pm 10 \% \quad \pm 5 \%$
If you rolled 3000 times and did not get 450-550 6's

```
3000 0.98 0.78
```

Pr[Average $=1 / 6 \pm \%$]
$n \quad \pm 10 \% \pm 5 \%$
If you rolled 3000 times and did not get 475-525 6's, you can be 78% confident your die is loaded
$30000.98 \quad 0.78$

Albert R Meyer, May 13, 2013
largenumbers. 13

Jacob D. Bernoulli (1659-1705)
It certainly remains to be inquired whether after the number of observations has been increased, the probability... of obtaining the true ratio...finally exceeds any given degree of certainty; or whether the problem has, so to speak, its own asymptote -that is, whether some degree of certainty is given which one can never exceed.
What Bernoulli means
Random var R with
mean μ.

Repeated Trials

take average:
 probably close to μ

$$
\begin{array}{r}
\operatorname{Pr}[\left|A_{n}-\mu\right| \leq \underbrace{\delta}]=? \\
\text { as close as } \delta>0
\end{array}
$$

Jacob D. Bernoulli (1659-1705)
Therefore, this is the problem which I now set forth and make known after I have pondered over it for twenty years. Both its novelty and its very great usefulness, coupled with its just as great difficulty, can exceed in weight and value all the remaining chapters of this thesis.
$\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|A_{n}-\mu\right| \leq \delta\right]=?$

$$
\begin{aligned}
& \text { Weak Law of Large Numbers } \\
& \lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|A_{n}-\mu\right| \leq \delta\right]=1
\end{aligned}
$$

Weak Law of Large Numbers
$\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\left|A_{n}-\mu\right|>\delta\right]=0$
will follow easily by Chebyshev \& variance properties

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

[^0]: 踢: Jacob D. Bernoulli (1659-1705)
 Even the stupidest man -by some instinct of nature per se and by no previous instruction (this is truly amazing) - knows for sure that the more observations ...that are taken, the less the danger will be of straying from the mark.
 ---Ars Conjectandi (The Art of Guessing), 1713* itum fram cinamadis seseil

 can Mathematical Society, p. 310 .

