

$$
\begin{aligned}
& \text { Independent Events } \\
& \text { Events } A \text { and } B \text { are independent iff } \\
& \qquad \operatorname{Pr}[A]=\operatorname{Pr}[A \mid B]
\end{aligned}
$$

Definition 2:
Events A and B are independent iff

$$
\operatorname{Pr}[A] \cdot \operatorname{Pr}[B]=\operatorname{Pr}[A \cap B]
$$

Definitions of Independence need $\operatorname{Pr}[B] \neq 0$ for Def. 1. Def. 2 always works:

```
Pr[A}}\cdot\operatorname{Pr}[B]=\operatorname{Pr}[A\capB
```


Independence
Corollary: If $\operatorname{Pr}[B]=0$, then
B is independent of every
event
Independence
A independent of B
means
Independence
means A is independent of B
whendent of or not B occurs:
Independence
A independent of B iff
A independent of \bar{B}.
Independence
Lemma: independent of B iff
A independent of \bar{B}
Simple proof using:
$\operatorname{Pr}[A-B]=\operatorname{Pr}[A]-\operatorname{Pr}[A \cap B]$

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

