MIT 6.042J/18.062J

Number Theory: GCD's \& linear combinations

Arithmetic Assumptions assume usual rules for,$+ \cdot-$: $a(b+c)=a b+a c, a b=b a$, $(a b) c=a(b c), a-a=0$, $a+0=a, a+1>a, \ldots$
Simple Divisibility Facts

- cla implies $c \mid(s a)$
$\left[a=k^{\prime} c\right.$ implies
$\quad(s a)=\frac{\left.\left(s k^{\prime}\right) c\right]}{k}$

Simple Divisibility Facts

- c|a implies c|(sa)
- if $c \mid a$ and $c \mid b$ then $c \mid(a+b)$
[if $a=k_{1} c, b=k_{2} c$ then $\left.a+b=\left(k_{1}+k_{2}\right) c\right]$

[^0]GCD
$\operatorname{gcd}(a, b)::=$ the greatest
common divisor of a and b
$\operatorname{gcd}(10,12)=2$
$\operatorname{gcd}(13,12)=1$
$\operatorname{gcd}(17,17)=17$
$\operatorname{gcd}(0, n)=n$ for $n>0$
\quad GCD
gcd $a, b)::=$ the greatest
common divisor of a and b
lemma: p prime implies
$g c d(p, a)=1$ or p
proof: The only divisors
of p are $\pm 1 \& \pm p$.

MIT OpenCourseWare
https://ocw.mit.edu
6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: Common Divisors
 Common divisors of $a \& b$ divide integer linear combinations of $a \& b$.

