Carnival Dice
Example: choose 5 , then
roll $2,3,4:$ lose $\$ 1$
roll $5,4,6:$ win $\$ 1$
roll $5,4,5:$ win $\$ 2$
roll $5,5,5:$ win $\$ 3$

	Carnival Dice $\begin{aligned} \operatorname{Pr}[0 \text { fives }] & =\left(\frac{5}{6}\right)^{3}=\frac{125}{216} \\ \operatorname{Pr}[1 \text { five }] & =\binom{3}{1}\left(\frac{5}{6}\right)^{2}\left(\frac{1}{6}\right) \\ \operatorname{Pr}[2 \text { fives }] & =\binom{3}{2}\left(\frac{5}{6}\right)^{1}\left(\frac{1}{6}\right)^{2} \\ \operatorname{Pr}[3 \text { fives }] & =\left(\frac{1}{6}\right)^{3} \end{aligned}$	
@(O)6	Albert R Meyer, May 8,2013	expect_intro. 6

	Carnival Dice		
	\# matches	probability	\$ won
	0	125/216	-1
	1	75/216	1
	2	15/216	2
	3	1/216	3
@os		Alear memere. wors 20s	

\quad Carnival Dice
so every 216 games, expect
0 matches about 125 times
1 match about 75 times
2 matches about 15 times
3 matches about once
and
\quad Carnival Dice
$\frac{125 \cdot(-1)+75 \cdot 1+15 \cdot 2+1 \cdot 3}{216}$
$=-\frac{17}{216} \approx-8$ cents

Expected Value

 The expected value of random variable R is the average value of R --with values weighted by their probabilities
Carnival Dice

You can "expect" to lose 8 cents per play. But younever actually lose 8 cents on any single play, this is just your average loss.

Alternative definition

$$
E[R]=\sum_{\omega \in S} R(\omega) \cdot \operatorname{Pr}[\omega]
$$

this form helpful in some proofs
©(6)
May 8,2013

Alternative definition $E[R]=\sum_{\omega \in S} R(\omega) \cdot \operatorname{Pr}[\omega]$ proof of equivalence:
$[R=v]::=\{\omega \mid R(\omega)=v\}$ so
$\operatorname{Pr}[R=v]::=\sum_{\omega \in[R=v]} \operatorname{Pr}[\omega]$
©(3) Albert R Meyer. May 8, 2013 expect_intro. 15

	proof of equivalence		
$\begin{aligned} & \text { No } \\ & E[R \end{aligned}$	$v \in \operatorname{range}(R)$	$\sum_{\omega \in[R=}$	

	Sums vs Integrals		
We get away with sums			
instead of integrals because			
the sample space is assumed			
countable:			
$S=\left\{\omega_{0}, \omega_{1, \ldots}, \omega_{n}, \ldots\right\}$			
@OBO	Albert R Meyer,	May 8, 2013	

Rearranging Terms
It's safe to rearrange terms
in sums because we implicitly
assume that the defining
sum for the expectation is
absolutely convergent
and

Absolute convergence
E[R]: $:=\sum_{v \in \text { range }(R)} v \cdot \operatorname{Pr}[R=v]$
the terms on the right could
be rearranged to equal
anything at all when the sum
is not absolutely convergent
and
also called
mean value, mean, or
expectation

Expectations \& Averages
 We can estimate averages by estimating expectations of random variables based on picking random elements sampling
 Albert R Meyer, May 8, 2013 expect_intro. 31

Expectations \& Averages

```
On the other hand \(\operatorname{Pr}[R>E[R]] \geq 1-\varepsilon\) is possible for all \(\varepsilon>0\) For example, almost everyone has an above average number of fingers.
踾踤 Expectations & Averages
On the other hand
```

Expectations \& Averages For example, it is impossible for all exams to be above average (no matter what the townspeople of Lake Woebegone say):

ert R Meyer,
May 8,2013
expect_intro. 33

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

