

Carnival Dice			
	# matches	probability	\$ won
	0	125/216	-1
	1	75/216	1
	2	15/216	2
	3	1/216	3
CODO Albert R Meyer, May 8, 2013 expect_intro.7			

Expected Value The expected value of random variable R is the average value of R --with values weighted by their probabilities

Albert R Meyer,

May 8, 2013

expect_intro.12

@090

Expected Value
The expected value of
random variable R is

$$E[R] ::= \sum_{v \in range(R)} v \cdot Pr[R = v]$$
so E[\$win in Carnival] = $-\frac{17}{216}$

$$\begin{array}{c|c} & \textbf{proof of equivalence} \\ \hline \textbf{Now} \\ \textbf{E[R]} &\coloneqq & \sum_{v \in range(R)} v \cdot \sum_{\omega \in [R=v]} \Pr[\omega] \\ &= & \sum_{v} & \sum_{\omega \in [R=v]} v \cdot \Pr[\omega] \\ &= & \sum_{v} & \sum_{\omega \in [R=v]} v \cdot \Pr[\omega] \end{array}$$

$$\begin{array}{c|c} & \textbf{proof of equivalence} \\ \hline \textbf{Now} \\ \textbf{E[R]} & \coloneqq & \sum_{v \in range(R)} v \cdot \sum_{\omega \in [R=v]} Pr[\omega] \\ & = & \sum_{v} & \sum_{\omega \in [R=v]} v \cdot Pr[\omega] \\ \end{array}$$

$$\begin{array}{c|c} & \text{proof of equivalence} \\ \hline \text{Now} \\ \hline \text{E[R]} & \coloneqq & \sum_{v \in range(R)} v \cdot \sum_{\omega \in [R=v]} \Pr[\omega] \\ & = & \sum_{v \in \omega \in [R=v]} \sum_{\omega \in S} R(\omega) \cdot \Pr[\omega] \\ & = & \sum_{\omega \in S} R(\omega) \cdot \Pr[\omega] \end{array}$$

@ 000

@ 0 0 0

Sums vs Integrals

We get away with sums instead of integrals because the sample space is assumed countable:

$$\mathcal{S} = \{\omega_0, \, \omega_1, \dots, \, \omega_n, \dots\}$$

May 8, 2013

expect_intro.23

expect_intro.25

Albert R Mever.

Albert R Meyer,

May 8, 2013

@090

Expectations & Averages

From a pile of graded exams, pick one at random, and let S be its score. Now E[S] equals the average exam score

May 8, 2013

expect_intro.29

Albert R Meyer,

Expectations & Averages

We can estimate averages by estimating expectations of random variables

Albert R Meyer

May 8, 2013

expect_intro.30

6.042J / 18.062J Mathematics for Computer Science Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.