
 

  

  

    
 

   
  
  

Albert R Meyer, May 8, 2013 

Mathematics for Computer Science 
MIT 6.042J/18.062J 

Great 
Expectations 

expect_intro.1 Albert R Meyer, May 8, 2013 

Carnival Dice 

Choose a number from 1 to 6, 
then roll 3 fair dice: 
win $1 for each match 
lose $1 if no match 

expect_intro.3 

Albert R Meyer, May 8, 2013 

Carnival Dice 

Example: choose 5, then 
roll 2,3,4: lose $1 
roll 5,4,6: win $1 
roll 5,4,5: win $2 
roll 5,5,5: win $3 
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Carnival Dice 

Is this a 
fair game? 

expect_intro.5 
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Pr[3 fives] = 
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Carnival Dice 
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Carnival Dice 

# matches probability $ won 

0 125/216 -1 
1 75/216 1 
2 15/216 2 
3 1/216 3 

expect_intro.7 

Albert R Meyer, May 8, 2013 

Carnival Dice 

so every 216 games, expect 
0 matches about 125 times 
1 match about 75 times 
2 matches about 15 times 
3 matches about once 

expect_intro.8 Albert R Meyer, May 8, 2013 

Carnival Dice 

So on average expect to win: 

125 −1( )  75⋅ + ⋅ 15+ 1⋅ 31 2 + ⋅ 
216 

17= −  ≈ −8cents
216 

expect_intro.9 
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Albert R Meyer, May 8, 2013 

So on average expect to win: 

125 ⋅ 1 3⋅

17= −  ≈ −8cents 
216 

NOT fair! 

expect_intro.10 
expect intro 10 

Carnival Dice 

Albert R Meyer, May 8, 2013 

Carnival Dice 

You can “expect” to lose 8 cents 
per play. But you never actually 
lose 8 cents on any single play, 
this is just your average loss. 

expect_intro.11 

Albert R Meyer, May 8, 2013 

Expected Value 
The expected value of 
random variable R is 
the average value of R 
--with values weighted 
by their probabilities 
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The expected value of 
random variable R is 

E[R] ::= v ⋅Pr[R = v] 
v∈range(R) 
∑ 

so E[$win in Carnival] = − 
17 
216 

Expected Value 

expect_intro.13 
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Alternative definition 

E[R] = ∑R(ω) ⋅Pr[ω] 
ω∈S 

this form helpful in 
some proofs 

expect_intro.14 Albert R Meyer, May 8, 2013 

Alternative definition 

E[R] = ∑R(ω) ⋅Pr[ω] 
ω∈S 

proof of equivalence:
[R = v] ::= {ω |R(ω) = v}

 so 

Pr[R = v] ::= ∑ Pr[ω] 
ω∈[R=v] 

expect_intro.15 

Albert R Meyer, May 8, 2013 

proof of equivalence
Now 

E[R] ::= ∑ v ⋅Pr[R = v] 
v∈range(R) 

expect_intro.16 Albert R Meyer, May 8, 2013 

proof of equivalence
Now 

E[R] ::= ∑ v ⋅Pr[R = v] 
v∈range(R) 

expect_intro.17 
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Albert R Meyer,            May 8, 2013 

proof of equivalence 
Now 

E[R] ::= ∑ v ⋅ ∑ Pr[ω]
 v∈range(R) ω∈[R=v]

expect_intro.18 Albert R Meyer,            May 8, 2013 

proof of equivalence 
Now 

E[R] ::= ∑ v ⋅ ∑ Pr[ω]
 v∈range(R) ω∈[R=v]

= ∑ ∑ v ⋅Pr[ω]
 v ω∈[R=v]

expect_intro.19 
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proof of equivalence 
Now 

E[R] ::= ∑ v ⋅ ∑ Pr[ω]
 v∈range(R) ω∈[R=v]

= ∑ ∑ v ⋅Pr[ω]
 v ω∈[R=v]
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proof of equivalence 
Now 

E[R] ::= ∑ v ⋅ ∑ Pr[ω]
 v∈range(R) ω∈[R=v]

= ∑ ∑ R(ω) ⋅Pr[ω]
 v ω∈[R=v]

= ∑ R(ω) ⋅Pr[ω]
  ω∈S

expect_intro.21 

Now 
E[R] :

= R(ω) ⋅Pr[ω]
ω∈S



                    

                    

 
 

 

 

 

  

 

 

 

Albert R Meyer, May 8, 2013 

Sums vs Integrals 

We get away with sums 
instead of integrals because 
the sample space is assumed 
countable: 

S = {ω0, ω1,…, ωn,…} 
expect_intro.23 Albert R Meyer, May 8, 2013 

Rearranging Terms 

It’s safe to rearrange terms 
in sums because 

expect_intro.24 
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Rearranging Terms 

It’s safe to rearrange terms 
in sums because we implicitly 
assume that the defining 
sum for the expectation is 

absolutely convergent 
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Absolute convergence 

E[R] ::= ∑ v ⋅ Pr[R = v] 
v∈range(R) 

the terms on the right could 
be rearranged to equal 
anything at all when the sum 
is not absolutely convergent 

expect_intro.26 
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Albert R Meyer, May 8, 2013 

Expected Value 

also called 
mean value, mean, or 

expectation 

expect_intro.27 Albert R Meyer, May 8, 2013 

Expectations & Averages 

From a pile of graded exams, 
pick one at random, and let S 
be its score. 

expect_intro.28 
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Expectations & Averages 

From a pile of graded exams, 
pick one at random, and let S 
be its score. Now E[S] equals

 the average exam score 

expect_intro.29 Albert R Meyer, May 8, 2013 

Expectations & Averages 

We can estimate averages 
by estimating expectations 
of random variables 

expect_intro.30 
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Expectations & Averages 

We can estimate averages 
by estimating expectations 
of random variables based 
on picking random elementspmmmmommmmJ
 

sampling
 
Albert R Meyer, May 8, 2013 expect_intro.31 

Expectations & Averages 

For example, it is impossible for 
all exams to be above average 
(no matter what the townspeople 

of Lake Woebegone say): 

Pr[R > E[R]] < 1 

Albert R Meyer, May 8, 2013 expect_intro.32 

Expectations & Averages
 

On the other hand 

Pr[R > E[R]] ≥ 1− ε
 
is possible for all ɛ > 0 
For example, almost 
everyone has an above 
average number of fingers. 

Albert R Meyer, May 8, 2013 expect_intro.33 
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