
\quad Expected \#Heads
n independent flips of a
coin with bias p for Heads.
How many Heads expected?
$E\left[B_{n, p}\right]::=\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k}$
nem

> Expected \#Heads
> n independent flips of a coin with bias p for Heads. How many Heads expected?

> E[\# Heads]
> $=E\left[B_{n, p}\right]$

Expected \#Heads
Binomial theorem and differentiating gives a closed formula

	Binomial Expectation$\begin{aligned} E\left[B_{n, p}\right]:: & =\sum_{k=0}^{n} k\binom{n}{k} p^{k} q^{n-k} \\ n & =\frac{1}{p} \sum_{k=0}^{n} k\binom{n}{k} p^{k} q^{n-k} \end{aligned}$		

	Binomial Expectation	
	$E\left[B_{n, p}\right]::=\sum_{k=0}^{n} k\binom{n}{k} p^{k} q^{n-k}$	
	$n=\frac{1}{p} E\left[B_{n, p}\right]$	
	$n p: E\left[B_{n, p}\right]$	lecran

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

