Computing GCD's The Euclidean Algorithm

```
GCD Remainder Lemma
Lemma:
gcd(a,b) = gcd(b, rem(a,b))
for b}=
Proof: }a=qb+
any divisor of 2 of these
terms must divide all }3
```

GCD Remainder Lemma
Lemma:
$\operatorname{gcd}(a, b)=\operatorname{gcd}(b, \operatorname{rem}(a, b))$ for $b \neq 0$

Proof: $a=q b+r$ so a, b and b, r have the same divisors


```
*in# Euclidean Algorithm
as a State Machine:
States ::= \mathbb{N}\times\mathbb{N}
start ::= (a,b)
state transitions defined by
    (x,y) ->(y,\operatorname{rem}(x,y))
for y}=
```


GCD partial correctness
at termination (if any)
$x=\operatorname{gcd}(a, b)$

Proof: $a t$ termination, $y=0$, so
$x=\operatorname{gcd}(x, 0)$
$\operatorname{gcd}(x, y)=\operatorname{gcd}(a, b)$
preserved invariant

and

GCD partial correctness
By Lemma, $\operatorname{gcd}(x, y)$ is constant. so preserved invariant is
$P((x, y))::=[\operatorname{gcd}(a, b)=\operatorname{gcd}(x, y)]$
$P($ start $)$ is trivially true: $[\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b)]$

GCD Termination
At each transition, x is replaced
by y. If $y \leqq x / 2$, then x gets
halved at this step.
A. ind
 \rightarrow -

MIT OpenCourseWare
https://ocw.mit.edu
6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

