

relation R on set A is symmetric iff $a \mathrm{Rb}$ IMPLIES $b \mathrm{Ra}$

敲踢 two－way walks walk from u to v and back from v to u ： u and v are strongly connected

```
    uG* v AND vG*u
```

踢：in id equivalence relations
transitive， symmetric \＆ reflexive
＠®®®
Albert R Meyer
March 22， 2013
equiv． 4

\section*{| 6 | 9 | 13 | 7 |
| :---: | :---: | :---: | :---: |
| 12 | | 10 | 5 | \\ equivalence relations Theorem: \\ R is an equiv rel iff \\ R is the strongly connected relation of some digraph}

©(C)(®)
Albert R Meyer March 22, 2013 equiv 5

 examples:

- = (equality)
- 三 (mod n)
- same size
- same color
©(1) Albert R Meyer March 22, 2013 equiv. 6

Representing Equivalences

$$
\begin{aligned}
& \text { representing } \equiv(\bmod n) \\
& \equiv(\bmod n) \text { is } \\
& \equiv_{f} \text { where } \\
& \quad f(k)::=\operatorname{rem}(k, n)
\end{aligned}
$$

呺미융

Representing equivalences
Theorem:
Relation R on set A is an equiv. relation IFF
R is \equiv_{f}
for some $f: A \rightarrow B$

```
@(\odot@()
```

Albert R Meyer March 22, 2013 equiv. 10

Ropresenting equivalences

For partition Π of A
define relation \equiv_{π} on A :
$a \equiv{ }_{\Pi} a^{\prime}$ IFF a, a^{\prime} are in the same block of Π
Requiv. relation IFF
$\quad R$ is $\equiv \Pi$
Relation R on set A is an
for some partition Π of A
Representing equivalences

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

