Mathematics for Computer Science
 MIT 6.042J/18.062J
 Conditional Probability

䀎: Conditional Probability: A Fair Die

$$
\operatorname{Pr}\left[\text { roll 1] }=\frac{|\{1\}|}{|\{1,2,3,4,5,6\}|}=\frac{1}{6}\right.
$$

"knowledge" changes probabilities:
Pr[roll 1 knowing rolled odd]

$$
=\frac{|\{1\}|}{|\{1,3,5\}|}=\frac{1}{\mid}=
$$

Conditional Probability
We were reasoning about conditional probability in the way we defined our probability spaces in the first place.

We were using:

Conditional Probability
In fact, we use this reasoning to define conditional probability:

Product Rule

$\operatorname{Pr}[A \cap B]=$ $\operatorname{Pr}[A] \cdot \operatorname{Pr}[B \mid A]$

$\operatorname{Pr}[B \mid A]$ is the probability of event B, given that event A has occurred:

$$
\operatorname{Pr}[B \mid A]::=\frac{\operatorname{Pr}[A \cap B]}{\operatorname{Pr}[A]}
$$

Conditioning Defines a New Space Conditioning on A defines a new probability function Pr_{A} where

(anditioning Defines a New Space Conditioning on A defines a new probability function Pr_{A} where outcomes not in A are assigned probability zero, and outcomes in A have their problems raised in proportion to A.

[^0]MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

[^0]:
 Now
 $\operatorname{Pr}[B \mid A]=\operatorname{Pr}[B]$.
 This implies conditional probability obeys all the rules, for example

 Conditional Difference Rule $\operatorname{Pr}[B-C \mid A]=$
 $\operatorname{Pr}[B \mid A]-\operatorname{Pr}[B \cap C \mid A]$
 @(O) Albert R Meyer, May 3, 2013

