

Birthday Pairs

$$
\begin{aligned}
& P::=~ \# ~ p a i r s ~ w i t h ~ m a t c h i n g ~ \\
& \text { b'days among } n \text { people } \\
& \text { in a d-day year }
\end{aligned}
$$

$P=\sum_{1 \leq i<j \leq n} M_{i j}$
$M_{i j}::=$ indicator that $i^{\text {th }}$ \& $j^{\text {th }}$ birthdays match
©c) © © © birthday.2

Have data on 179*students

$$
E[P]=\binom{179}{2} \cdot \frac{1}{365} \approx 43.6
$$

*excluding 2 sets of twins
so by linearity of $E[]$
$E[P]=\sum_{1 \leq i<j \leq n} E\left[M_{i j}\right]=\binom{n}{2} \cdot \frac{1}{d}$

Birthday Pairs

How likely is P near 43.6?
$\operatorname{Pr}[|P-43.6|>k]$
hard to calculate!
Variance easy to calculate!

Pairwise Independence

[Albert and Drew have same b'day] is independent of [David and Mike have same b'day] that is, $M_{\text {Albert,Drew }} \& M_{\text {David,Mike }}$ are independent
Obvious since the b'days of Albert, Drew, David \& Mike are mutually independent

```
@()(8) ()
    Albert R Meyer, December 1,2013

\section*{Birthday Pairs \\ \[
\operatorname{Var}\left[M_{i j}\right]=(1 / 365)(1-1 / 365)
\]}
so by prwise additivity of \(\operatorname{Var}[]\) \(\operatorname{Var}[P]=\sum \operatorname{Var}\left[M_{\mathrm{ij}}\right]=\binom{179}{2} \operatorname{Var}\left[M_{\mathrm{ij}}\right]\)
\(=\binom{179}{2} \cdot \frac{1}{365} \cdot\left(1-\frac{1}{365}\right) \approx 43.5\)
\(\sigma_{p}<6.6\)
© (1) (2)
Albert R Meyer, December 1,2013
birthday. 9



MIT OpenCourseWare
https://ocw.mit.edu
6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.```

