

```
99% accurate TB testing
A great-sounding diagnostic
test for TB:
```

慮触 99\% accurate TB testing
A great-sounding diagnostic test for TB: if you have TB the test is guaranteed to detect it.

> 99\% accurate TB testing
> A great-sounding diagnostic test for TB: if you have TB the test is guaranteed to detect it. If you don't have TB, the test says so 99% of the time.

踢: in in 99% accurate TB testing
A great-sounding diagnostic test for TB: if you have TB the test is guaranteed to detect it. If you don't have TB, the test says so 99% of the time. Your doctor gives you the test, and it says you have TB!

Do you have TB?
What is the probability that you have TB given that a 99\% accurate says you do? $\operatorname{Pr}[T B \mid+\quad]=$? "+" for [test positive]
 test says TB!
TB is a serious disease and the test is at least 99% accurate. How worried should you be? What is the probability that you actually have TB?
Do you have TB?
$\operatorname{Pr}[+\mid T B]=1$

$$
\operatorname{Pr}[+\operatorname{lnot} T B]=\frac{1}{100}
$$

false positive rate only 1%

Do you have TB?

$$
\operatorname{Pr}[\mathrm{TB} \mid+]=\frac{\operatorname{Pr}[\mathrm{TB} A N D+]}{\operatorname{Pr}[+]}
$$

$$
=\frac{\operatorname{Pr}[\mathrm{TB}]}{\operatorname{Pr}[+]}
$$

$$
\text { ©(OQ Albert R Meyer, May 3, } 2013 \quad \text { bayes. } 10
$$

跂: int Probability of Testing Positive
$\operatorname{Pr}[+]=\operatorname{Pr}[+\mid T B] \cdot \operatorname{Pr}[T B]$
$+\operatorname{Pr}[+\mid$ not $T B] \cdot \operatorname{Pr}[$ not $T B]$
$=\frac{99}{100} \operatorname{Pr}[T B]+\frac{1}{100}$

Albert R Meyer,
May 3,2013
bayes. 15

Do you have TB?

$$
\begin{aligned}
\operatorname{Pr}[\mathrm{TB} \mid+] & =\frac{\operatorname{Pr}[\mathrm{TB}]}{\operatorname{Pr}[+]} \\
& =\frac{\operatorname{Pr}[\mathrm{TB}]}{\frac{99}{100} \operatorname{Pr}[\mathrm{~TB}]+\frac{1}{100}}
\end{aligned}
$$

$$
\text { What is } \operatorname{Pr}[T B] \text { ? }
$$

Albert R Meyer. May 3, 2013
bayes. 17

期 11,000 TB cases reported CDC got reports of 11,000 cases of TB in US in 2011. Will be lots of unreported. So estimate:

$$
\operatorname{Pr}[T B] \approx \frac{1}{10,000}
$$


```
A "more accurate" test
    99% accurate test is not so
    good here. In fact, there's
    a trivial test that is 99.99%
    accurate:
    always say "No TB"
```

 \(99 \%\) accuracy still useful
 99\% accurate test did
increase your probability
of TB 100 times.

```
9:3% accuracy still useful
    99% accurate test did increase your probability of TB 100 times. If you only had 5 M medicine doses for a population of 350M, whom should you medicate?
```

```
99% accuracy still useful
Medicate the 3.5 M who test positive, and you're likely to cure nearly all the cases.
```

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Spring 2015

For information about citing these materials or our Terms of Use, visit:|http://ocw.mit.edu/terms.

