In-Class Problems Week 4, Mon.

Problem 1.

Prove by induction:

$$
\begin{equation*}
1+\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{n^{2}}<2-\frac{1}{n} \tag{1}
\end{equation*}
$$

for all $n>1$.

Problem 2. (a) Prove by induction that a $2^{n} \times 2^{n}$ courtyard with a 1×1 statue of Bill in a corner can be covered with L-shaped tiles. (Do not assume or reprove the (stronger) result of Theorem 5.1.2 in the course textbook that Bill canbe placed anywhere. The point of this problem is to show a different induction hypothesis that works.)
(b) Use the result of part (a) to prove the original claim that there is a tiling with Bill in the middle.

Problem 3.

Any amount of 12 or more cents postage can be made using only $3 \notin$ and $7 \notin$ stamps. Prove this by induction using the induction hypothesis

$$
S(n)::=n+12 \text { cents postage can be made using only } 3 \notin \text { and } 7 \phi \text { stamps. }
$$

Problem 4.

The following Lemma is true, but the proof given for it below is defective. Pinpoint exactly where the proof first makes an unjustified step and explain why it is unjustified.

Lemma. For any prime p and positive integers $n, x_{1}, x_{2}, \ldots, x_{n}$, if $p \mid x_{1} x_{2} \ldots x_{n}$, then $p \mid x_{i}$ for some $1 \leq i \leq n$.

Bogus proof. Proof by strong induction on n. The induction hypothesis, $P(n)$, is that Lemma holds for n.
Base case $n=1$: When $n=1$, we have $p \mid x_{1}$, therefore we can let $i=1$ and conclude $p \mid x_{i}$.
Induction step: Now assuming the claim holds for all $k \leq n$, we must prove it for $n+1$.
So suppose $p \mid x_{1} x_{2} \cdots x_{n+1}$. Let $y_{n}=x_{n} x_{n+1}$, so $x_{1} x_{2} \cdots x_{n+1}=x_{1} x_{2} \cdots x_{n-1} y_{n}$. Since the righthand side of this equality is a product of n terms, we have by induction that p divides one of them. If $p \mid x_{i}$ for some $i<n$, then we have the desired i. Otherwise $p \mid y_{n}$. But since y_{n} is a product of the two terms x_{n}, x_{n+1}, we have by strong induction that p divides one of them. So in this case $p \mid x_{i}$ for $i=n$ or $i=n+1$.

[^0]MIT OpenCourseWare
https://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

 Spring 2015For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: @(O)®
 2015, Eric Lehman, F Tom Leighton, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 license.

