In-Class Problems Week 4, Mon.

Problem 1.

Prove by induction:

$$1 + \frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n},$$
(1)

for all n > 1.

Problem 2. (a) Prove by induction that a $2^n \times 2^n$ courtyard with a 1×1 statue of Bill in *a corner* can be covered with L-shaped tiles. (Do not assume or reprove the (stronger) result of Theorem 5.1.2 in the course textbook that Bill can be placed anywhere. The point of this problem is to show a different induction hypothesis that works.)

(b) Use the result of part (a) to prove the original claim that there is a tiling with Bill in the middle.

Problem 3.

Any amount of 12 or more cents postage can be made using only 3ϕ and 7ϕ stamps. Prove this *by induction* using the induction hypothesis

S(n) ::= n + 12 cents postage can be made using only 3¢ and 7¢ stamps.

Problem 4.

The following Lemma is true, but the *proof* given for it below is defective. Pinpoint *exactly* where the proof first makes an unjustified step and explain why it is unjustified.

Lemma. For any prime p and positive integers $n, x_1, x_2, ..., x_n$, if $p \mid x_1x_2...x_n$, then $p \mid x_i$ for some $1 \le i \le n$.

Bogus proof. Proof by strong induction on *n*. The induction hypothesis, P(n), is that Lemma holds for *n*. **Base case** n = 1: When n = 1, we have $p | x_1$, therefore we can let i = 1 and conclude $p | x_i$. **Induction step**: Now assuming the claim holds for all k < n, we must prove it for n + 1.

So suppose $p | x_1x_2 \cdots x_{n+1}$. Let $y_n = x_nx_{n+1}$, so $x_1x_2 \cdots x_{n+1} = x_1x_2 \cdots x_{n-1}y_n$. Since the righthand side of this equality is a product of *n* terms, we have by induction that *p* divides one of them. If $p | x_i$ for some i < n, then we have the desired *i*. Otherwise $p | y_n$. But since y_n is a product of the two terms x_n, x_{n+1} , we have by strong induction that *p* divides one of them. So in this case $p | x_i$ for i = n or i = n + 1.

^{2015,} Eric Lehman, F Tom Leighton, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 license.

6.042J / 18.062J Mathematics for Computer Science Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.