In-Class Problems Week 3, Fri.

Problem 1.

The *inverse*, R^{-1} , of a binary relation, R, from A to B, is the relation from B to A defined by:

 $b R^{-1} a$ iff a R b.

In other words, you get the diagram for R^{-1} from R by "reversing the arrows" in the diagram describing R. Now many of the relational properties of R correspond to different properties of R^{-1} . For example, R is *total* iff R^{-1} is a *surjection*.

Fill in the remaining entries is this table:

R is	iff	R^{-1} is
total		a surjection
a function		
a surjection		
an injection		
a bijection		

Hint: Explain what's going on in terms of "arrows" from A to B in the diagram for R.

Arrow Properties

Definition. A binary relation, *R* is

- is a *function* when it has the $[\leq 1 \text{ arrow out}]$ property.
- is *surjective* when it has the [≥ 1 arrows **in**] property. That is, every point in the righthand, codomain column has at least one arrow pointing to it.
- is *total* when it has the $[\geq 1 \text{ arrows out}]$ property.
- is *injective* when it has the $[\leq 1 \text{ arrow in}]$ property.
- is *bijective* when it has both the [= 1 arrow **out**] and the [= 1 arrow **in**] property.

Problem 2.

Let $A = \{a_0, a_1, \dots, a_{n-1}\}$ be a set of size n, and $B = \{b_0, b_1, \dots, b_{m-1}\}$ a set of size m. Prove that $|A \times B| = mn$ by defining a simple bijection from $A \times B$ to the nonnegative integers from 0 to mn - 1.

Problem 3.

Assume $f : A \to B$ is total function, and A is finite. Replace the \star with one of $\leq =, \geq$ to produce the *strongest* correct version of the following statements:

^{2015,} Eric Lehman, F Tom Leighton, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 license.

- (a) $|f(A)| \star |B|$.
- (b) If f is a surjection, then $|A| \star |B|$.
- (c) If f is a surjection, then $|f(A)| \star |B|$.
- (d) If f is an injection, then $|f(A)| \star |A|$.
- (e) If f is a bijection, then $|A| \star |B|$.

Problem 4.

Let $R : A \rightarrow B$ be a binary relation. Use an arrow counting argument to prove the following generalization of the Mapping Rule 1 in the course textbook.

Lemma. If *R* is a function, and $X \subseteq A$, then

$$|X| \ge |R(X)|.$$

Problem 5. (a) Prove that if A surj B and B surj C, then A surj C.

- (**b**) Explain why A surj B iff B inj A.
- (c) Conclude from (a) and (b) that if A inj B and B inj C, then A inj C.
- (d) Explain why A inj B iff there is a total injective function ($[= 1 \text{ out}, \le 1 \text{ in}]$) from A to B.¹

¹The official definition of inj is with a total injective *relation* ([≥ 1 out, ≤ 1 in])

6.042J / 18.062J Mathematics for Computer Science Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.