In-Class Problems Week 7, Mon.

Problem 1. (a) Give an example of a digraph in which a vertex v is on a positive even-length closed walk, but no vertex is on an even-length cycle.
(b) Give an example of a digraph in which a vertex v is on an odd-length closed walk but not on an oddlength cycle.
(c) Prove that every odd-length closed walk contains a vertex that is on an odd-length cycle.

Problem 2.

, QUXHFRXUHMW WRRNLemma 9.2 .5 states that dist $(u, v) \leq \operatorname{dist}(u, x)+\operatorname{dist}(x, v)$. It also states that equality holds iff x is on a shortest path from u to v.
(a) Prove the "iff" statement from left to right.
(b) Prove the "iff" from right to left.

Problem 3.

A 3 -bit string is a string made up of 3 characters, each a 0 or a 1 . Suppose you'd like to write out, in one string, all eight of the 3 -bit strings in any convenient order. For example, if you wrote out the 3-bit strings in the usual order starting with $000001010 \ldots$, you could concatenate them together to get a length $3 \cdot 8=24$ string that started $000001010 \ldots$.

But you can get a shorter string containing all eight 3 -bit strings by starting with $00010 \ldots$. Now 000 is present as bits 1 through 3, and 001 is present as bits 2 through 4 , and 010 is present as bits 3 through $5, \ldots$.
(a) Say a string is 3 -good if it contains every 3 -bit string as 3 consecutive bits somewhere in it. Find a 3 -good string of length 10 , and explain why this is the minimum length for any string that is 3 -good.
(b) Explain how any walk that includes every edge in the graph shown in Figure $\underline{1}$ determines a string that is 3 -good. Find the walk in this graph that determines your 3 -good string from part (a).
(c) Explain why a walk in the graph of Figure 1 that includes every every edge exactly once provides a minimum-length 3 -good string -1
(d) Generalize the 2-bit graph to a k-bit digraph, B_{k}, for $k \geq 2$, where $V\left(B_{k}\right)::=\{0,1\}^{k}$, and any walk through B_{k} that contains every edge exactly once determines a minimum length $(k+1)$-good bit-string 2 What is this minimum length?
Define the transitions of B_{k}. Verify that the in-degree and out-degree of every vertex is even, and that there is a positive path from any vertex to any other vertex (including itself) of length at most k.

[^0]

Figure 1 The 2-bit graph.

Suppemental Problem:

Problem 4.

In a round-robin tournament, every two distinct players play against each other just once. For a round-robin tournament with no tied games, a record of who beat whom can be described with a tournament digraph, where the vertices correspond to players and there is an edge $\langle x \rightarrow y\rangle$ iff x beat y in their game.

A ranking is a path that includes all the players. So in a ranking, each player won the game against the next ranked player, but may very well have lost their games against players ranked later-whoever does the ranking may have a lot of room to play favorites.
(a) Give an example of a tournament digraph with more than one ranking.
(b) Prove that every finite tournament digraph has a ranking.

MIT OpenCourseWare
https://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

 Spring 2015For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: @Q®@ 2015, Eric Lehman, F Tom Leighton, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 license.
 ${ }^{1}$ The 3 -good strings explained here generalize to n-good strings for $n \geq 3$. They were studied by the great Dutch mathematician/logician Nicolaas de Bruijn, and are known as de Bruijn sequences. de Bruijn died in February, 2012 at the age of 94.
 ${ }^{2}$ Problem 9.23 explains why such "Eulerian" paths exist.

