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In-Class Problems Week 6, Mon.

Problem 1.
Find

remainder
�

34567899876
�

999
�5555

�
34142596789 ; 14

�
: (1)

Problem 2.
Suppose a; b are relatively prime and greater than 1. In this problem you will prove the Chinese Remainder
Theorem, which says that for all m; n, there is an x such that

x � m mod a; (2)

x � n mod b: (3)

Moreover, x is unique up to congruence modulo ab, namely, if x0 also satisfies (2) and (3), then

x0 � x mod ab:

(a) Prove that for any m; n, there is some x satisfying (2) and (3).

Hint: Let b�1 be an inverse of b modulo a and define ea WWDb�1b. Define eb similarly. Let x D meaCneb .

(b) Prove that
Œx � 0 mod a AND x � 0 mod b� implies x � 0 mod ab:

(c) Conclude that �
x � x0 mod a AND x � x0 mod b

�
implies x � x0 mod ab:

(d) Conclude that the Chinese Remainder Theorem is true.

(e) What about the converse of the implication in part (c)?

Problem 3.

Definition. The set, P , of integer polynomials can be defined recursively:

Base cases:

� the identity function, IdZ.x/ WWD x is in P .

� for any integer, m, the constant function, cm.x/ WWDm is in P .

Constructor cases. If r; s 2 P , then r C s and r � s 2 P .
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2 In-Class Problems Week 6, Mon.

(a) Using the recursive definition of integer polynomials given above, prove by structural induction that for
all q 2 P ,

j � k .mod n/ IMPLIES q.j / � q.k/ .mod n/;

for all integers j; k; n where n > 1.

Be sure to clearly state and label your Induction Hypothesis, Base case(s), and Constructor step.

(b) We’ll say that q produces multiples if, for every integer greater than one in the range of q, there are
infinitely many different multiples of that integer in the range. For example, if q.4/ D 7 and q produces
multiples, then there are infinitely many different multiples of 7 in the range of q.

Prove that if q has positive degree and positive leading coefficient, then q produces multiples. You may
assume that every such polynomial is strictly increasing for large arguments.

Hint: Observe that all the elements in the sequence

q.k/; q.k C v/; q.k C 2v/; q.k C 3v/; : : : ;

are congruent modulo v. Let v D q.k/.
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