In-Class Problems Week 5, Mon.

Problem 1.

The Elementary 18.01 Functions (F18's) are the set of functions of one real variable defined recursively as follows:

Base cases:

- The identity function, id(x) ::= x is an F18,
- any constant function is an F18,
- the sine function is an F18,

Constructor cases:

If f, g are F18's, then so are

- 1. $f + g, fg, 2^g$,
- 2. the inverse function f^{-1} ,
- 3. the composition $f \circ g$.
- (a) Prove that the function 1/x is an F18.

Warning: Don't confuse $1/x = x^{-1}$ with the inverse id⁻¹ of the identity function id(x). The inverse id⁻¹ is equal to id.

(b) Prove by Structural Induction on this definition that the Elementary 18.01 Functions are *closed under* taking derivatives. That is, show that if f(x) is an F18, then so is f' ::= df/dx. (Just work out 2 or 3 of the most interesting constructor cases; you may skip the less interesting ones.)

Problem 2.

Let p be the string []. A string of brackets is said to be *erasable* iff it can be reduced to the empty string by repeatedly erasing occurrences of p. For example, here's how to erase the string [[[]][]:

$[\llbracket []] \llbracket] \rrbracket \rightarrow \llbracket [] \rrbracket \rightarrow \llbracket] \rightarrow \lambda.$

On the other hand the string []][[[[]] is not erasable because when we try to erase, we get stuck:][[[:

$[]][[[[]]] \rightarrow][[[]] \rightarrow][[[\not \rightarrow$

Let Erasable be the set of erasable strings of brackets. Let RecMatch be the recursive data type of strings of *matched* brackets defined recursively:

• **Base case**: $\lambda \in \text{RecMatch}$.

^{2015,} Eric Lehman, F Tom Leighton, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 license.

• Constructor case: If $s, t \in \text{RecMatch}$, then $[s] t \in \text{RecMatch}$.

(a) Use structural induction to prove that

RecMatch
$$\subseteq$$
 Erasable.

(b) Supply the missing parts (labeled by "(*)") of the following proof that

Erasable \subseteq RecMatch.

Proof. We prove by strong induction that every length n string in Erasable is also in RecMatch. The induction hypothesis is

 $P(n) ::= \forall x \in \text{Erasable. } |x| = n \text{ IMPLIES } x \in \text{RecMatch.}$

Base case:

(*) What is the base case? Prove that *P* is true in this case.

Inductive step: To prove P(n + 1), suppose |x| = n + 1 and $x \in$ Erasable. We need to show that $x \in$ RecMatch.

Let's say that a string y is an *erase* of a string z iff y is the result of erasing a *single* occurrence of p in z.

Since $x \in$ Erasable and has positive length, there must be an erase, $y \in$ Erasable, of x. So $|y| = n - 1 \ge 0$, and since $y \in$ Erasable, we may assume by induction hypothesis that $y \in$ RecMatch.

Now we argue by cases:

Case (*y* is the empty string):

(*) Prove that $x \in \text{RecMatch}$ in this case.

Case (y = [s] t for some strings $s, t \in \text{RecMatch})$: Now we argue by subcases.

• **Subcase**(x = py):

(*) Prove that $x \in \text{RecMatch in this subcase}$.

- Subcase (x is of the form [s']t where s is an erase of s'):
- Since $s \in \text{RecMatch}$, it is erasable by part (b), which implies that $s' \in \text{Erasable}$. But |s'| < |x|, so by induction hypothesis, we may assume that $s' \in \text{RecMatch}$. This shows that x is the result of the constructor step of RecMatch, and therefore $x \in \text{RecMatch}$.
- Subcase (x is of the form [s] t' where t is an erase of t'):

(*) Prove that $x \in \text{RecMatch in this subcase}$.

(*) Explain why the above cases are sufficient.

This completes the proof by strong induction on *n*, so we conclude that P(n) holds for all $n \in \mathbb{N}$. Therefore $x \in \text{RecMatch}$ for every string $x \in \text{Erasable}$. That is, Erasable \subseteq RecMatch. Combined with part (a), we conclude that

Erasable = RecMatch.

Definition. Base case: $0 \in E$.

Constructor cases: If $n \in E$, then so are n + 2 and -n.

Provide similar simple recursive definitions of the following sets:

- (a) The set $S ::= \{2^k 3^m 5^n \in \mathbb{N} \mid k, m, n \in \mathbb{N}\}.$
- (**b**) The set $T ::= \{2^k 3^{2k+m} 5^{m+n} \in \mathbb{N} \mid k, m, n \in \mathbb{N}\}.$
- (c) The set $L ::= \{(a, b) \in \mathbb{Z}^2 \mid (a b) \text{ is a multiple of } 3\}.$

Let L' be the set defined by the recursive definition you gave for L in the previous part. Now if you did it right, then L' = L, but maybe you made a mistake. So let's check that you got the definition right.

(d) Prove by structural induction on your definition of L' that

$$L' \subseteq L$$
.

(e) Confirm that you got the definition right by proving that

$$L \subseteq L'$$
.

(f) See if you can give an *unambiguous* recursive definition of L.

Supplemental problem:

Problem 4.

Definition. The recursive data type, binary-2PTG, of *binary trees* with leaf labels, *L*, is defined recursively as follows:

- **Base case:** $(leaf, l) \in binary-2PTG$, for all labels $l \in L$.
- Constructor case: If $G_1, G_2 \in \text{binary-2PTG}$, then

$$(\text{bintree}, G_1, G_2) \in \text{binary-2PTG}.$$

The size, |G|, of $G \in$ binary-2PTG is defined recursively on this definition by:

• Base case:

$$|\langle \text{leaf}, l \rangle| ::= 1, \text{ for all } l \in L.$$

• Constructor case:

$$|\langle \text{bintree}, G_1, G_2 \rangle| ::= |G_1| + |G_2| + 1.$$

For example, the size of the binary-2PTG, G, pictured in Figure 1, is 7.

(a) Write out (using angle brackets and labels bintree, leaf, etc.) the binary-2PTG, G, pictured in Figure 1.

The value of flatten(G) for $G \in \text{binary-2PTG}$ is the sequence of labels in L of the leaves of G. For example, for the binary-2PTG, G, pictured in Figure 1,

$$flatten(G) = (win, lose, win, win).$$

(b) Give a recursive definition of flatten. (You may use the operation of *concatenation* (append) of two sequences.)

(c) Prove by structural induction on the definitions of flatten and size that

$$2 \cdot \text{length}(\text{flatten}(G)) = |G| + 1. \tag{1}$$

Figure 1 A picture of a binary tree *G*.

6.042J / 18.062J Mathematics for Computer Science Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.