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PROFESSOR:

So we figured out that you can get the book stack, the overhang of the books, to be half the
harmonic sum. With n books, you can get out Hn over 2 where Hn is this harmonic sum, or
harmonic number. The question is, how are we going to estimate or calculate what this sum
is? Now it turns out there is no simple formula for exactly what this sum is, but there is a
simple formula that estimates it quite accurately. And we get the estimation by bounding the

sum by integrals. And so let's look at this integral method for estimating sums.

Remember what | wanted was the sum of 1 plus 1/2 plus 1/3 down to 1 over n. So let's form
some unit width rectangles of heights equal to the amount that | want. So here's a rectangle of
height 1, rectangle of height 1/2, rectangle of height 1/3. I'm going out here, if you actually
count to 8, but let's propose that this is a height 1 over n. And what | know is that the total area
of these rectangles is actually equal to the number that | want. The total area of these
rectangles is the harmonic number. And I'm interested in a lower bound for Hn, because |
want to know how far | can get out. | want a tight lower bound. It says Hn is larger than a

certain amount. That's the amount that I'm sure that | can stack out in books.

So the way I'm going to get a lower bound on this number Hn is by looking at this curve that
goes through the corners of the rectangles. And if you check it, that curve is 1 over x plus 1.
That is, the point here is-- when x is 0, I'm at 1 over 1. When x is 1, I'm at 1/2, the height of the
second rectangle, and so on. So 1 over x plus 1 is a curve that is strictly below the boundaries
of all these rectangles. That means that the area under 1 over x plus 1 going from 0 to nis a
lower bound on Hn, because it's a lower bound on the area of the rectangles. So Hn equals
the area of the rectangles. It's greater than the area of 1 over x plus 1, which of course is
equal to the integral from 0 to n of 1 over x plus 1, which shifting variables is the same as the
integral from 1 to n plus 1 of 1 over x dx, which of course we know is a natural logarithm of n

plus 1.

So there we have it. The overhang that you need for three books, which is Bn greater than or
equal to 3, means that Hn has to be greater than or equal to 6. So by this estimate, | need log
of n plus 1 greater than or equal to 6 in order to get three books out, that the back end of the
top book is two books past the edge of the table and the right end of the furthest out book is

three book lengths past the edge of the table. So my bound tells me that | need n books such

that log of n plus 1 is greater than or equal to 6. Well, exponentiating both sides, the right-



hand side becomes e to the 6th. And | figure out that as long as n is greater than or equal to e
to the 6th minus 1 books-- rounded up, of course, because there's only-- you can't have
fractions of a book-- you get an estimate that with 403 books, | can actually get my stack to

stick out three book lengths past the edge of the table.

Well if you do the actual calculation instead of the estimate, it turns out that 227 books are
enough. So this estimate's a little off. But for our purposes, it tells us a dramatic fact, which is
that we know that log of n plus 1 approaches infinity as n approaches infinity. And that means
that, with enough books, | can get out as far as | want. You tell me how many book lengths
you want to be out, I'll use the log n formula to calculate how many books | need to get that far

out.

So here's an example of some students in the class some years ago decided to do this as an
experiment. Now when we used to do this in class, we first tried to do it with the big, heavy
textbook that we used. And we kept trying to get them to balance and go out over the edge of
the table, and they failed, because it turns out that textbooks are heavy and they compress.
They're not the rigid rectangular cross sections that our model was based on. But CD cases
work very well. They are more rigid. They don't compress easily, and they're very lightweight
so that they don't cause problems with distortions because of the size of the stack. And so you

can actually get CD cases to stick out pretty far.

This is an example where it's 43 CD cases high, and the top four cases are completely past
the edge of the table. The leftmost edge is about 1.81 or 1.91 case lengths past the table.
There's another view of it from the guy who made the stack. And of course, they were right on
the edge of stability in trying to get the CDs to stick out as far as possible. So if you notice
these little spaces there, in terms of the balancing, it's really just on the brink of falling over. If
you sneeze at it, it'll tip. But if you don't sneeze at it, it's stable, and you get the top CD out that

far.

So while we're at it, let's get an upper bound for Hn. We just got a lower bound of Hn, but the
same kind of logic of using an integral will give you an upper bound for Hn. What | do now is |
run a curve from the upper right corners of the rectangles. And that curve is simply 1 over x.
So an upper bound for the harmonic number Hn is the area under 1 over x out to n plus this 1.
And so | get an upper bound that says that the harmonic number Hn is less than the integral

from 1 to n of 1 over x dx plus 1, or it's equal to 1 plus log of n.



So combining those two bounds that | got by looking at a curve that's a lower bound on the
area and a curve that's an upper bound on the area and integrating, | discover that Hn is
bracketed between the natural log of n plus 1 and 1 plus the natural log of n. Now these two
numbers, log of n plus 1 and 1 plus log of n, are very close, and they get closer and closer as
n grows. So it turns out that what we can say pretty accurately is that Hn is asymptotically
equal to log n. It's approximately equal to log n. And the precise definition of this tilde symbol

that I've highlighted in magenta is called asymptotically equal.

And the general definition of asymptotically equal, that Hn is asymptotically equal to log n, is
that a function f of n is asymptotically equal to a function g of n when the limit of their quotient
goes to 1. That is to say, as a multiplicative factor, each is within a constant one of the other in
the limit. 1 plus epsilon of-- 1 plus or minus epsilon of gn is going to bracket fn, and vice versa.

Asymptotic equivalents, or asymptotic equality.

Let's do an example. So the remark would be, for example, that n squared plus n is
asymptotically equal to n squared. Why? Well let's look at the limit as n approaches infinity of n
squared plus n over n squared. It's the same as simplifying algebraically the limit of 1 over 1
plus n. As n approaches infinity, that term goes to zero. Sure enough, the limitis 1, and so
these two terms are asymptotically equal. The idea of asymptotically equal is that all we care
about is the high order term. The low order terms will disappear, and we're looking at the
principal term that controls the growth rate of the functions when we look at them up to

asymptotic equivalence.

So let's step back for just a moment and generalize what we've done here with estimating the
harmonic sum. There's a general method called the integral method where, in this particular
case, suppose we have a function f, the positive real valued function that's weakly decreasing,
like 1 over x. Then let's let S be the sum from i equals 1 to n of f of i. So | was interested where
f of x was 1 over x, and | wanted the sum from 1 over-- 1 to n of 1 over i, which was the nth
harmonic number. And | was comparing that to the integral from 1 to n of f of x, or 1 over x in

our example.

So if | is the integral and S is the sum that | want, what we can conclude really is that, in
general, the sum is bracketed between the integral plus the first term of f of 1 in the sum, and
the integral plus the last term of the sum. Remember, f is weakly decreasing, so f of n is
smaller than f of 1. There's a similar theorem actually, just reverse f of 1 and f of n, to use an

integral estimate to get a bound on a weakly increasing function. And that gives us a general



tool for estimating the growth rate of sums.



