Problem Set 9

Due: April 17

Reading: Chapter 13. Asymptotics

Problem 1.

Assuming the following sum equals a polynomial in n, find the polynomial. Optionally, you might want to use induction to prove that the sum equals the polynomial you find, but no such proof is required for full credit.

$$
\sum_{i=1}^{n} i^{3}
$$

Problem 2.

Show that

$$
\ln \left(n^{2}!\right)=\Theta\left(n^{2} \ln n\right)
$$

Hint: Stirling's formula for $\left(n^{2}\right)!$.

Problem 3.

Prove that

$$
\sum_{k=1}^{n} k^{6}=\Theta\left(n^{7}\right)
$$

Hint: One solution uses the Integral Method, and there are other workable approaches that avoid calculus.

[^0]MIT OpenCourseWare
https://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

 Spring 2015For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: @(O)® 2015, Eric Lehman, F Tom Leighton, Albert R Mever. This work is available under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 license.

