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Notes for Recitation 5 

1 Exponentiation and Modular Arithmetic 

Recall that RSA encryption and decryption both involve exponentiation. To encrypt a 
message m, we use the following equation: 

m� = rem (m e , n) ≡ m e (mod n). 

And to decrypt a message m�, we use 

m = rem ((m�)d , n) ≡ (m�)d (mod n). 

In practice, e and d might be quite large. But even for relatively small values of these 
evariables, the quantities m and (m�)d can be very difficult to compute directly. Fortunately, 

there are tractable and efficient methods for carrying out exponentiation of large integer 
powers modulo a number. 

Let’s say we are trying to encrypt a message. First, note that: 

rem (a b, c) ≡ a b (mod c)· · 
≡ rem (a, c) rem (b, c) (mod c)· 
= rem (( rem (a, c) rem (b, c)), c)· 

This principle extends to an arbitrary number of factors, such that: 

a1 · a2 · . . . an ≡ rem (a1, c) rem (a2, c) · . . . rem (an, c) (mod c)· · · 

We illustrate this point with an example: 

Example: Find rem (23 61 19, 17).· · 
We could find the remainder of 23 61 19 = 26657 divided by 17, but that would be a lot · · 

of unnecessary work! Instead, we notice the fact that 23 ≡ 6 (mod 17), 61 ≡ 10 (mod 17), 
and 19 ≡ 2 (mod 17). Therefore, 23 61 19 ≡ 6 10 2 (mod 17). · · · · 

Similarly, we can reduce the remainder of 6 10 2 divided by 17. We notice the fact that · · 
10 2 = 20 ≡ 3 (mod 17), so 6 10 2 ≡ 6 3 = 18 ≡ 1 (mod 17). We could have also calculated · · · ·
6 10 = 60 ≡ 9 (mod 17) to get the same answer 6 10 2 ≡ 9 2 = 18 ≡ 1 (mod 17). While · · · · 
both methods here were relatively simple to use, how you choose to associate your factors 
may sometimes greatly affect the difficulty of a calculation! 
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Let’s return to RSA. Here’s one way we might go about encrypting our message (though 
in a minute we’ll consider a more efficient technique). We can compute m = rem (me, n) 
by breaking the exponentiation into a sequence of e − 1 multiplications. We then take the 
remainder after dividing by n after each one of these multiplications. 

Example: Encrypt the message m = 5 with e = 6 and n = 17. 
e eWe are trying to find rem (m ,n). We know that m = 56 = 5 5 5 5 5 5.· · · · · 

52 ≡ 8 (mod 17) 

53 ≡ 8 5 ≡ 6 (mod 17) · 
54 ≡ 6 5 ≡ 13 (mod 17) · 
55 ≡ 13 5 ≡ 14 (mod 17) · 
56 ≡ 14 5 ≡ 2 (mod 17) · 

OK, that’s nice, but for large e, e − 1 is still a lot of multiplications! As we promised earlier, 
there’s a yet more efficient way to do the exponentiation. It’s called repeated squaring. 

Example: Encrypt a message m = 5 with e = 149 and n = 17. 

Note that the binary expansion of 149 is 10010101, so one can compute rem (5149 , 17) by 
computing rem (5128+16+4+1 , 17). 

52 ≡ 8 (mod 17) 

54 ≡ 8 8 ≡ 13 (mod 17) · 
58 ≡ 13 13 ≡ 16 (mod 17) · 
516 ≡ 16 16 ≡ 1 (mod 17) · 
532 ≡ 1 1 ≡ 1 (mod 17) · 
564 ≡ 1 1 ≡ 1 (mod 17) · 
5128 ≡ 1 1 ≡ 1 (mod 17) · 

We used only 7 multiplications to find the remainders of 52k (mod 17) by repeatedly 
squaring each previous output and taking the remainder. Then, with only 3 additional 
multiplications to combine these products, we can compute 5128 516 54 51 ≡ 1 1 13 5 ≡ 14· · · · · · 
(mod 13). This saved us (149 − 1) − (7 + 3) = 138 multiplications! 

You may notice that in this particular case, 516 ≡ 1 (mod 17), so we could have even 
stopped our squaring at 516 and reduced the problem to computing rem (516·9+4+1 , 17) ≡
(516)9 54 5 ≡ 19 13 5 ≡ 14 (mod 17). For this we only needed (4 + 2) = 6 multiplications! · · · · 

You may find this technique very useful in the next problem. 
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2 RSA: Let’s try it out! 

You’ll probably need extra paper. Check your work carefully! 

1. As a team, go through the beforehand steps. 

(a) Choose primes p and q to be relatively small, say in the range 5-15. In practice, 
p and q might contain several hundred digits, but small numbers are easier to 
handle with pencil and paper. 

Solution. We choose p = 7 and q = 11 for our example. � 

(b) Calculate n = pq. This number will be used to encrypt and decrypt your messages. 

Solution. In our example, n = pq = 77. � 

(c) Find an e > 1 such that gcd(e, (p − 1)(q − 1)) = 1. 

The pair (e, n) will be your public key. This value will be broadcast to other 
groups, and they will use it to send you messages. 

Solution. In our example, p − 1 = 6 = 2 3 and q − 1 = 10 = 2 5. Therefore, · · 
any e that is odd and neither a multiple of 5 nor 3 would work. We choose 
e = 13. � 

(d) Now you will need to find a d such that de ≡ 1 (mod (p − 1)(q − 1)). 

� Explain how this could be done using the Pulverizer. (Do not carry out the 
computations!) 

Solution. We can rewrite the equation de ≡ 1 (mod (p − 1)(q − 1)) to read 
de − 1 = k(p − 1)(q − 1) for some integer value k. Rearranging this yields the 
equation de − k(p − 1)(q − 1) = 1. Because gcd(e, (p − 1)(q − 1)) = 1, we know 
such a linear combination of e and (p−1)(q −1) exists! Using the Pulverizer will 
give us the coefficient d, and then we can adjust d to be positive using techniques 
from class. In this case d = −23, which can be adjusted to 37. � 

� Find d using Euler’s Theorem given in yesterday’s lecture. 
The pair (d, n) will be your secret key. Do not share this with anybody! 

Solution. Since e and (p−1)(q −1) are relatively prime, we can claim by Euler’s 
Theorem that eφ((p−1)(q−1)) ≡ 1 (mod (p−1)(q−1)) and hence eφ((p−1)(q−1))−1 e ≡·
1 (mod (p − 1)(q − 1)). 

This means d = eφ((p−1)(q−1))−1 is an inverse of e (mod (p−1)(q−1)). To find the 
value of d, we first calculate φ((p−1)(q−1)). In our example, the factorization of 
(p−1)(q−1) is 22 3 5, so φ((p−1)(q−1)) = (22−21)(31−30)(51−50) = 2 2 4 = 16. · · · ·
We substitute e and φ((p − 1)(q − 1)) into our equation to get d = 1316−1 = 1315 . 

1315 is a huge number! Therefore, we must reduce d to something more manage­
able using repeated squaring. In our example, we square 13 to get 132 = 169 ≡ 49 
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(mod 60). We square our result to get 134 = (132)2 ≡ 492 = 2401 ≡ 1 (mod 60). 

Once we know 134 ≡ 1 (mod 60), our job is much easier. 1315 = (134)3 132 13 ≡· ·
13 49 13 = 637 ≡ 37 (mod 60). This matches our answer from the Pulverizer. · · 
Which method is easier depends on the particular numbers that we’ve chosen. 

When you’re done, write your public key and group members’ names on the board. 

2. Now ask your recitation instructor for a message to encrypt and send to another team 
using their public key. 

The messages m correspond to statements from the codebook below: 

2 = Greetings and salutations!


3 = Wassup, yo?


4 = You guys are slow!


5 = All your base are belong to us.


6 = Someone on our team thinks someone on your team is kinda cute.


7 = You are the weakest link. Goodbye.


3.	 Encode the message you were given using another team’s public key. 

Solution. Let’s say our message was m = 3 and the other team’s public key was 
(e, n) = (11, 35). The encrypted message would then be m� = rem (311 , 35). Using 
repeated squaring, we see that 311 = 38+2+1 . We compute 32 = 9 (mod 35), 34 = 
81 ≡ 11 (mod 35), 38 = (34)2 ≡ 112 = 121 ≡ 16 (mod 35). Therefore 311 ≡ 16 9 3 = · ·
432 ≡ 12 (mod 35), so our message is m� = 12.	 � 

4. Now	decrypt the message sent to you and verify that you received what the other 
team sent! 

Solution. Let’s say the other team sent you the encrypted message m� = 26. In our 
case, our private key was (d, n) = (37, 77). The decrypted original message would 
then be m = rem (2637 , 77). Using repeated squaring, we find m = 5. � 

5. Explain how you could read messages encrypted with RSA if you could quickly factor 
large numbers. 

Solution. Suppose you see a public key (e, n). If you can factor n to obtain p and q, 
then you can compute d using the Pulverizer or Euler’s Theorem. This gives you the 
secret key (d, n), and so you can decode messages as well as the intended recipient.� 
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RSA Public-Key Encryption 

Beforehand The receiver creates a public key and a secret key as follows. 

1. Generate two distinct primes, p and q. 

2. Let n = pq. 

3. Select an integer e such that gcd(e, (p − 1)(q − 1)) = 1. 
The public key is the pair (e, n). This should be distributed widely. 

4. Compute d such that de ≡ 1 (mod (p − 1)(q − 1)). 
The secret key is the pair (d, n). This should be kept hidden! 

Encoding The sender encrypts message m to produce m� using the public key: 

m� = rem (m e , n) 

Decoding The receiver decrypts message m� back to message m using the secret key: 

m = rem ((m�)d , n). 
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