6.042/18.062J Mathematics for Computer Science September 24, 2010
Tom Leighton and Marten van Dijk

Notes for Recitation 5

1 Exponentiation and Modular Arithmetic

Recall that RSA encryption and decryption both involve exponentiation. To encrypt a
message m, we use the following equation:

m' = rem (m®,n) =m°® (mod n).

And to decrypt a message m’, we use

d

m = rem ((m)%, n) = (m)* (mod n).

In practice, e and d might be quite large. But even for relatively small values of these
variables, the quantities m¢ and (m/)? can be very difficult to compute directly. Fortunately,
there are tractable and efficient methods for carrying out exponentiation of large integer
powers modulo a number.

Let’s say we are trying to encrypt a message. First, note that:

rem (a-b,c) =a-b (mod c)
= rem (a,c) - rem (b,c) (mod c)

= rem ((rem (a,c) - rem (b, c)),c)
This principle extends to an arbitrary number of factors, such that:

ay-as-...-a, = rem(ay,c)- rem(ag,c)-...- rem(a,,c) (mod c)

We illustrate this point with an example:
Example: Find rem (23-61-19,17).

We could find the remainder of 236119 = 26657 divided by 17, but that would be a lot
of unnecessary work! Instead, we notice the fact that 23 = 6 (mod 17), 61 = 10 (mod 17),
and 19 =2 (mod 17). Therefore, 23-61-19=6-10-2 (mod 17).

Similarly, we can reduce the remainder of 6 - 10 - 2 divided by 17. We notice the fact that
10-2 =20 =3 (mod 17),806-10-2=6-3 =18 =1 (mod 17). We could have also calculated
6-10=60=9 (mod 17) to get the same answer 6-10-2=9-2=18=1 (mod 17). While
both methods here were relatively simple to use, how you choose to associate your factors
may sometimes greatly affect the difficulty of a calculation!

Recitation 5 2

Let’s return to RSA. Here’s one way we might go about encrypting our message (though
in a minute we’ll consider a more efficient technique). We can compute m = rem (m®,n)
by breaking the exponentiation into a sequence of e — 1 multiplications. We then take the
remainder after dividing by n after each one of these multiplications.

Example: Encrypt the message m = 5 with e = 6 and n = 17.
We are trying to find rem (m¢ n). We know that m¢ =5%=5-5-5-5-5-5.

52=8 (mod 17)
5=8-5=6 (mod 17)
5*=6-5=13 (mod 17)
5=13-5=14 (mod 17)
5=14-5=2 (mod 17)

OK, that’s nice, but for large e, e — 1 is still a lot of multiplications! As we promised earlier,
there’s a yet more efficient way to do the exponentiation. It’s called repeated squaring.

Example: Encrypt a message m = 5 with e = 149 and n = 17.

Note that the binary expansion of 149 is 10010101, so one can compute rem (549 17) by
computing rem (5128+H16+4+1 117

52=8 (mod 17)
5'=8-8=13 (mod 17)
5=13-13=16 (mod 17)
59=16-16=1 (mod 17)
52=1.-1=1 (mod 17)
5% =1.-1=1 (mod 17)
52 =1.1=1 (mod 17)

We used only 7 multiplications to find the remainders of 5%* (mod 17) by repeatedly
squaring each previous output and taking the remainder. Then, with only 3 additional
multiplications to combine these products, we can compute 5'28.5%.54.51 =1.1.13.5 =14
(mod 13). This saved us (149 — 1) — (7 + 3) = 138 multiplications!

You may notice that in this particular case, 5'¢ = 1 (mod 17), so we could have even
stopped our squaring at 5'% and reduced the problem to computing rem (5159+4+1 17) =
(516)9.51.5=19.13-5 =14 (mod 17). For this we only needed (4 + 2) = 6 multiplications!

You may find this technique very useful in the next problem.

Recitation 5 3
2 RSA: Let’s try it out!

You’ll probably need extra paper. Check your work carefully!

1. As a team, go through the beforehand steps.

(a) Choose primes p and ¢ to be relatively small, say in the range 5-15. In practice,
p and ¢ might contain several hundred digits, but small numbers are easier to
handle with pencil and paper.

Solution. We choose p = 7 and ¢ = 11 for our example. [

(b) Calculate n = pg. This number will be used to encrypt and decrypt your messages.

Solution. In our example, n = pg = 77. [

(c¢) Find an e > 1 such that ged(e, (p —1)(¢ — 1)) = 1.

The pair (e,n) will be your public key. This value will be broadcast to other
groups, and they will use it to send you messages.

Solution. In our example, p—1=6=2-3 and ¢ — 1 = 10 = 2 - 5. Therefore,
any e that is odd and neither a multiple of 5 nor 3 would work. We choose
e=13. [

(d) Now you will need to find a d such that de =1 (mod (p — 1)(q — 1)).

e Explain how this could be done using the Pulverizer. (Do not carry out the
computations!)

Solution. We can rewrite the equation de = 1 (mod (p — 1)(¢ — 1)) to read
de —1 = k(p —1)(¢ — 1) for some integer value k. Rearranging this yields the
equation de — k(p — 1)(¢ — 1) = 1. Because gcd(e, (p — 1)(¢ — 1)) = 1, we know
such a linear combination of e and (p—1)(¢—1) exists! Using the Pulverizer will
give us the coefficient d, and then we can adjust d to be positive using techniques
from class. In this case d = —23, which can be adjusted to 37. [

e Find d using Euler’s Theorem given in yesterday’s lecture.
The pair (d,n) will be your secret key. Do not share this with anybody!

Solution. Since e and (p—1)(¢—1) are relatively prime, we can claim by Euler’s
Theorem that e?(®=D(@=1) =1 (mod (p—1)(¢—1)) and hence e?(P=N(a=1)=1.c =

1 (mod (p—1)(¢ —1)).

This means d = e?((P~D@=D)=1 is an inverse of e (mod (p—1)(¢g—1)). To find the
value of d, we first calculate ¢p((p—1)(¢g—1)). In our example, the factorization of
(p—1)(g—1) is 22-3-5, 50 ¢((p—1)(¢—1)) = (22—2")(3'=3°)(5' —5°) = 2.2-4 = 16.
We substitute e and ¢((p—1)(¢—1)) into our equation to get d = 13'6~1 = 1315,

13 is a huge number! Therefore, we must reduce d to something more manage-
able using repeated squaring. In our example, we square 13 to get 132 = 169 = 49

Recitation 5 4

(mod 60). We square our result to get 13* = (13?)% = 49? = 2401 = 1 (mod 60).

Once we know 13 = 1 (mod 60), our job is much easier. 13' = (13%)3.13%.13 =
134913 = 637 = 37 (mod 60). This matches our answer from the Pulverizer.
Which method is easier depends on the particular numbers that we’ve chosen.
|

When you're done, write your public key and group members’ names on the board.
2. Now ask your recitation instructor for a message to encrypt and send to another team
using their public key.

The messages m correspond to statements from the codebook below:

2 = Greetings and salutations!

3 = Wassup, yo?

4 = You guys are slow!

5 = All your base are belong to us.

6 = Someone on our team thinks someone on your team is kinda cute.

7 = You are the weakest link. Goodbye.

3. Encode the message you were given using another team’s public key.

Solution. Let’s say our message was m = 3 and the other team’s public key was
(e,n) = (11,35). The encrypted message would then be m’ = rem (3!,35). Using
repeated squaring, we see that 3! = 38721 'We compute 3> = 9 (mod 35), 3* =
81 =11 (mod 35), 3% = (3*)2 = 112 = 121 = 16 (mod 35). Therefore 3! = 16-9-3 =
432 = 12 (mod 35), so our message is m’ = 12. |

4. Now decrypt the message sent to you and verify that you received what the other
team sent!

Solution. Let’s say the other team sent you the encrypted message m’ = 26. In our
case, our private key was (d,n) = (37,77). The decrypted original message would
then be m = rem (263", 77). Using repeated squaring, we find m = 5. [|

5. Explain how you could read messages encrypted with RSA if you could quickly factor
large numbers.

Solution. Suppose you see a public key (e, n). If you can factor n to obtain p and g,
then you can compute d using the Pulverizer or Euler’s Theorem. This gives you the
secret key (d,n), and so you can decode messages as well as the intended recipient.Hl

Recitation 5

RSA Public-Key Encryption
Beforehand The receiver creates a public key and a secret key as follows.

1. Generate two distinct primes, p and q.
2. Let n = pq.

3. Select an integer e such that ged(e, (p—1)(¢g — 1)) = 1.
The public key is the pair (e,n). This should be distributed widely.

4. Compute d such that de =1 (mod (p — 1)(¢ — 1)).
The secret key is the pair (d,n). This should be kept hidden!

Encoding The sender encrypts message m to produce m’ using the public key:
m' = rem (m°, n)
Decoding The receiver decrypts message m’ back to message m using the secret key:

m = rem ((m')% n).

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Exponentiation and Modular Arithmetic
	RSA: Let's try it out!

