

Quick Summary

1. Fundamental Concepts of Discrete Mathematics.
2. Discrete Mathematical Structures (like trees or lists)
3. Discrete Probability Theory.

Online Tutor Problems 1

Due Friday, 1pm:
Part 1.1: Course Registration

Due Monday, 1pm:
Part 1.2: Diagnostic Questionnaire

Reading Assignment

Reading: see course calendar Email comments:
due Wednesday 11am

Course Organization

- Web site: All course handouts.
- Problem Sets: up to 30\% of grade (see course info).

Course Organization

- Studio-Lecture Style: mix of mini-lectures \& team problem-solving; preparation \& attendance required (25% of grade)

Active Lectures

Quickie question:
Where was your neighbor born?

15	8	11

Getting started:

Pythagorean theorem

$a^{2}+\stackrel{a}{b}^{2}=c^{2}$
Familiar? Yes!
Obvious? No!

Another False Proof

Theorem:
Every polynomial, $a x^{2}+b x+c$, has two roots over \mathbb{C}.
Proof (by calculation):
The polynomial $a x^{2}+b x+c$ has roots

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

Another False proof

Counter-examples:
$0 x^{2}+0 x+1$ has 0 roots.
$0 x^{2}+1 x+1$ has 1 root.
The bug: divide by zero error. The fix: assume $a \neq 0$.

Another false proof

Counter-example:

$$
1 x^{2}+0 x+0 \text { has } 1 \text { root. }
$$

The bug: $\quad r_{1}=r_{2}$
The fix: need hypothesis $D \neq 0$ where

$$
D::=\sqrt{b^{2}-4 a c}
$$

Consequences of $\mathbf{1 = - 1}$

$$
\begin{array}{ll}
1 / 2=-1 / 2 & (\text { multiply by } 1 / 2) \\
2=1 & \left(\text { add } \frac{3}{2}\right)
\end{array}
$$

"Since I and the Pope are clearly 2, we conclude that
I and the Pope are 1.
That is, I am the Pope."
-- Bertrand Russell
2. Calculation is a risky substitute for understanding.

In-class Problems

PROBLEMS 1 \& 2

