

Biased Against:
$$p < 1/2 < q$$

Betting red in US roulette
 $p = 18/38 = 9/19 < 1/2$

Biased Against: p < 1/2 < q

More amazing still! Pr{win \$100 starting with \$1M} < 1/37,000 Pr{win \$100 starting w/ any \$n stake} < 1/37,000

Return to the origin.

If you start at the origin and move left or right with equal probability, and keep moving in this way,

 $Pr\{return to origin\} = 1$

lec 15w.26

How Many Bets?

What is the expected number of bets for the game to end?
– either by winning \$(*T*-*n*) or by going broke (losing \$*n*).

How Many Bets? Fair Case

$$E[\# bets] = n(T-n) =$$

(initial stake)·(intended profit)
proof by solving linear recurrence:
 $e_n = p(1 + e_{n+1}) + q(1 + e_{n-1})$

Fair Case for
$$T = \infty$$

Likewise,
 $E[\#bets \text{ for } T = \infty]$
 $\geq E[\#bets \text{ for } T < \infty]$
 $= n(T-n) \rightarrow \infty \text{ (as } T \rightarrow \infty)$
So the expected $\#bets$ to go broke is
infinite!

