Graph with probable transitions

Graph with probable transitions

Questions

- $\operatorname{Pr}\{$ blue reaches orange before green $\} \square$
- $\operatorname{Pr}\{$ blue ever reaches orange $\}$
- E[\#steps blue to orange]
- Average fraction of time at blue

Random Walks

Applications

- Finance - Stocks, options
- Algorithms - web search, clustering
- Physics - Brownian Motion

Gambler's Ruin

Parameters:

n ::= initial capital (stake)
$T::=$ gambler's Target
$p::=\operatorname{Pr}\{$ win $\$ 1$ bet $\}$
$q::=1-p$
$m::=$ intended profit $=T-n$

Gambler's Ruin

Three general cases:

- Biased against $\quad p<1 / 2$
- Biased in favor $\quad p>1 / 2$
- Unbiased (Fair) $\quad p=1 / 2$

Fair Case: $p=q=1 / 2$
Let $w::=\operatorname{Pr}\{$ reach Target $\}$

$$
\begin{aligned}
\mathrm{E}[\$ \$] & =w \cdot(T-n)+(1-w) \cdot(-n) \\
& =w T-n
\end{aligned}
$$

But game is fair, so $\mathrm{E}[\$ \$$ won $]=0$

$$
w=\frac{n}{T}
$$

Fair Case: $p=q=1 / 2$
Let $w::=\operatorname{Pr}\{$ reach Target $\}$

$$
w=\frac{n}{T}
$$

Consequences		
$n=500, T=600$		
$\operatorname{Pr}\{$ win $\$ 100\}=500 / 600 \approx 0.83$		
$n=1,000,000, T=1,000,100$		
$\operatorname{Pr}\{$ win \$100\} ≈ 0.9999		

Biased Against: $p<1 / 2<q$
Betting red in US roulette

$$
p=18 / 38=9 / 19<1 / 2
$$

Biased Against: $p<1 / 2<q$
Astonishing Fact!
$\operatorname{Pr}\{$ win $\$ 100$ starting with $\$ 500\}$
< 1/37,000 !
(was 5/6 in the unbiased case.)

Winning in the Unfair Case
Team Problem: for $p<q$,

$$
\begin{aligned}
w_{n} & \leq \frac{(q / p)^{n}}{(q / p)^{T}} \\
& =\left(\frac{p}{q}\right)^{m}
\end{aligned}
$$

where $m::=T-n=$ intended profit

Losing in Roulette

$$
\begin{aligned}
p=18 / 38, q= & 20 / 38 \\
\operatorname{Pr}\{\operatorname{win} \$ 100\} & =\left(\frac{18 / 38}{20 / 38}\right)^{100} \\
& =\left(\frac{9}{10}\right)^{100} \\
& <\frac{1}{37,648}
\end{aligned}
$$

Losing in Roulette

$$
\begin{aligned}
\operatorname{Pr}\{\text { win } \$ 200\} & =(\operatorname{Pr}\{\operatorname{win} \$ 100\})^{2} \\
& =\left(\frac{1}{37,648}\right)^{2} \\
& <\frac{1}{70,000,000}
\end{aligned}
$$

Fair Case

pr\{lose starting with $\$ n\}$
$=p r\{$ win starting with $\$(T-n)\}$
$=\frac{T-n}{T}$

Return to the origin.

If you start at the origin and move left or right with equal probability, and keep moving in this way,

$$
\operatorname{Pr}\{\text { return to origin }\}=1
$$

How Many Bets?

What is the expected number of bets for the game to end? - either by winning $\$(T-n)$ or by going broke (losing $\$ n$).

How Many Bets? Fair Case

$\mathrm{E}[\#$ bets $]=n(T-n)=$ (initial stake).(intended profit) proof by solving linear recurrence:

$$
e_{n}=p\left(1+e_{n+1}\right)+q\left(1+e_{n-1}\right)
$$

Likewise,
E[\#bets for $T=\infty$]
$\geq \mathrm{E}[\# \mathrm{\#}$ ets for $T<\infty$]

$$
=n(T-n) \rightarrow \infty \quad(\text { as } T \rightarrow \infty)
$$

So the expected \#bets to go broke is infinite!

