LECTURE 5

- Readings: Sections 2.1-2.3, start 2.4

Lecture outline

- Random variables
- Probability mass function (PMF)
- Expectation
- Variance

Random variables

- An assignment of a value (number) to every possible outcome
- Mathematically: A function from the sample space Ω to the real numbers
- discrete or continuous values
- Can have several random variables defined on the same sample space
- Notation:
- random variable X
- numerical value x

Probability mass function (PMF)

- ("probability law", "probability distribution" of X)
- Notation:

$$
\begin{aligned}
p_{X}(x) & =\mathbf{P}(X=x) \\
& =\mathbf{P}(\{\omega \in \Omega \text { s.t. } X(\omega)=x\})
\end{aligned}
$$

- $p_{X}(x) \geq 0 \quad \sum_{x} p_{X}(x)=1$
- Example: $X=$ number of coin tosses until first head
- assume independent tosses, $\mathbf{P}(H)=p>0$

$$
\begin{aligned}
p_{X}(k) & =\mathbf{P}(X=k) \\
& =\mathbf{P}(T T \cdots T H) \\
& =(1-p)^{k-1} p, \quad k=1,2, \ldots
\end{aligned}
$$

- geometric PMF

How to compute a PMF $p_{X}(x)$

- collect all possible outcomes for which X is equal to x
- add their probabilities
- repeat for all x
- Example: Two independent rools of a fair tetrahedral die
F : outcome of first throw
S : outcome of second throw
$X=\min (F, S)$

$p_{X}(2)=$

Binomial PMF

- X : number of heads in n independent coin tosses
- $\mathbf{P}(H)=p$
- Let $n=4$

$$
\begin{aligned}
p_{X}(2)= & \mathbf{P}(H H T T)+\mathbf{P}(H T H T)+\mathbf{P}(H T T H) \\
& +\mathbf{P}(T H H T)+\mathbf{P}(T H T H)+\mathbf{P}(T T H H) \\
= & 6 p^{2}(1-p)^{2} \\
= & \binom{4}{2} p^{2}(1-p)^{2}
\end{aligned}
$$

In general:
$p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad k=0,1, \ldots, n$

Properties of expectations

- Let X be a r.v. and let $Y=g(X)$
- Hard: $\mathbf{E}[Y]=\sum_{y} y p_{Y}(y)$
- Easy: $\mathrm{E}[Y]=\sum_{x} g(x) p_{X}(x)$
- Caution: In general, $\mathbf{E}[g(X)] \neq g(\mathbf{E}[X])$

Properties: If α, β are constants, then:

- $\mathbf{E}[\alpha]=$
- $\mathbf{E}[\alpha X]=$
- $\mathbf{E}[\alpha X+\beta]=$

Expectation

- Definition:

$$
\mathrm{E}[X]=\sum_{x} x p_{X}(x)
$$

- Interpretations:
- Center of gravity of PMF
- Average in large number of repetitions of the experiment (to be substantiated later in this course)
- Example: Uniform on $0,1, \ldots, n$

$\mathrm{E}[X]=0 \times \frac{1}{n+1}+1 \times \frac{1}{n+1}+\cdots+n \times \frac{1}{n+1}=$

Variance

Recall: $\quad \mathrm{E}[g(X)]=\sum_{x} g(x) p_{X}(x)$

- Second moment: $\mathrm{E}\left[X^{2}\right]=\sum_{x} x^{2} p_{X}(x)$
- Variance

$$
\begin{aligned}
\operatorname{var}(X) & =\mathbf{E}\left[(X-\mathbf{E}[X])^{2}\right] \\
& =\sum_{x}(x-\mathbf{E}[X])^{2} p_{X}(x) \\
& =\mathbf{E}\left[X^{2}\right]-(\mathbf{E}[X])^{2}
\end{aligned}
$$

Properties:

- $\operatorname{var}(X) \geq 0$
- $\operatorname{var}(\alpha X+\beta)=\alpha^{2} \operatorname{var}(X)$

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

