
Lab 4 

To work on this problem set, you will need to get the code:  

This lab has two parts; the first part is on CSPs and the second part is on learning algorithms, 

specifically KNN and decision trees.  

Constraint Satisfaction Problems  

In this portion of Lab 4, you are to complete the implementation of a general constraint satisfaction 

problem solver. You'll test it on problems we've worked out by hand in class.  

We have provided you a basic CSP implementation in csp.py. The implementation has the Depth-

first-search already completed. It even has a basic built in constraint checker. So it will produce the 

search trees of the kind for DFS w/ back tracking with basic constraint checking.  

However, it doesn't do forward checking or forward checking + singleton propagation!  

So your job is to complete:  

forward_checking(state): 

and  

forward_checking_prop_singleton(state): 

in the file lab4.py. Here state is an instance of CSPState an object that keep track of the current 

variable assignments and domains. These functions are called by the Search algorithm at every node in 

the search tree. These functions should return False at points at which the Domain Reduction Algorithm 

would backtrack, and True otherwise (i.e. continue extending).  

As a hint, here is the (unrefined) pseudocode for the two algorithms.  

Forward Checking  

1. Let X be the variable currently being assigned.  

2. Let x be the value being assigned to X.  

3. Find all the binary constraints that are associated with X.  

4. For each constraint:  

1. Let Y be the variable connected to X by that binary constraint.  

2. For each variable value y in Y's domain  

1. If constraint checking fails for X=x and Y=y  

1. Remove y from Y's domain  

2. If the domain of Y is reduced down to the empty set, then the entire check fails: 

return False.  

5. If all constraints passed declare success, return True  

If you get a state with no current variable assignment (at the Root of the search tree) then you should just 

return True, since forward checking could only be applied when there is some variable assignment.  
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Forward Checking with Propagation through Singletons  

1. Run forward checking, fail if forward checking fails.  

2. Find variables with domains of size 1.  

3. Create a queue of singleton variables.  

4. While singleton queue is not empty  

1. Pop off the first singleton variable X (add X to list of visited singletons)  

2. Find all the binary constraints that singleton X is associated with.  

3. For each constraint therein:  

1. Let Y be the variable connected to X by that binary constraint:  

1. For each value of y in Y's domain:  

1. If constraint check fails for X = (X's singleton value) and Y = y:  

1. Remove y from Y's domain  

2. If the domain of Y is reduced down to the empty set, then the 

entire check fails, return False.  

4. Check to see if domain reduction produced any new and unvisited singletons; if so, add 

them to the queue.  

5. return True.  

API  

These are some useful functions defined in csp.py that you should use in your code to implement the 

above algorithms:  

CSPState: representation of one of the many possible search states in the CSP problem.  

 get_current_variable() - gets the Variable instance being currently assigned. Returns 

None if we are in the root state, when there are no variable assignments yet.  

 get_constraints_by_name(variable_name) - retrieves all the BinaryConstraint 

objects associated with variable_name.  

 get_variable_by_name(variable_name) - retrieves the Variable object associated 

with variable_name.  

 get_all_variables() - gets the list of all Variable objects in this CSP problem.  

Variable: representation of a variable in these problems.  

 get_name() - returns the name of this variable.  

 get_assigned_value() - returns the assigned value of this variable. Returns None if 

is_assigned() returns False, that is if the variable hasn't been assigned yet.  

 is_assigned() - returns True if we've made an assignment for this variable.  

 get_domain() - returns a copy of the list of the current domain of this variable. Use this to 

iterate over values of Y.  

You might want to consider using this method to get the singular value of a variable with domain 

size reduced to 1.  

 reduce_domain(value) - remove value from this variable's domain.  

 domain_size() - returns the size of this variable's domain  
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BinaryConstraint: a binary constraint on variable i, j: i -> j.  

 get_variable_i_name() - name of the i variable  

 get_variable_j_name() - name of the j variable  

 check(state, value_i=value, value_j=value) - checks the binary constraint for 

a given CSP state, with variable i set by value i, and variable j set by value j. Returns False if the 

constraint fails. Raises an exception if value_i or value_j are not set or cannot be inferred from 

state.  

NOTE: in our implementation of CSPs, constraints are symmetrical; a constraint object exists for each 

"direction" of a constraint, so you can check for the presence of a constraint by substituting for i and/or j 

in the most convenient fashion for you.  

Here is how you might use the API to get the value of a variable currently being assigned.  

var = state.get_current_variable() 

value = None 

if var is not None:   # we are not in the root state 

   value = var.get_assigned_value() 

   # Here value is the value of the variable current being assigned. 

Here is how you might use the API to get the singular value from a singleton variable:  

if singleton_var.domain_size() == 1 

   value = singleton_var.get_domain()[0] 

Testing  

For unit testing, we have provided moose_csp.py, an implementation of the seating problem 

involving a Moose, Palin, McCain, Obama, Biden and You -- in terms of the framework as defined in 

csp.py.  

Running:  

python moose_csp.py dfs  

will return the search tree for DFS with constraint checking. When you have finished your 

implementation, running python moose_csp.py fc or python moose_csp.py fcps should 

return the correct search trees under forward checking and forward checking with singleton propagation.  

Similarly  

Running:  

python map_coloring_csp.py [dfs|fc|fcps] 

Should return the expected search trees for the B,Y,R, state coloring problem from the 2nd Quiz in 

2006.  
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There are also other fun solved CSP problems in the directory that you can test and play around with. 

You can submit your own unique solution to an interesting CSP problem to get extra credit!  

EXTRA CREDIT  

As extra credit, try to follow the code in moose_csp.py or map_coloring_csp.py, and 

implement a problem() function that returns a CSP instance for a problem of your own choosing.  

You may do one of the problems from past quizzes: the 2009 Time Traveler scheduling problem or the 

2010 Jigsaw puzzle question. Alternately, you may implement something that you find useful or 

interesting, ideas include: scheduling classes, seating guests for a wedding or dinner party (to maximize 

harmony), solving crypt-arithmetic puzzles, the 8-queens problem, or crossword puzzles.  

You may also try to extend csp.py. For instance, you can add ability to find an optimal solution rather 

than just a constraint-satisfying solution (i.e. replace DFS with one of the optimal searches we've 

learned). Or you can add support for multi-variable constraints, and make the code solve the Max-flow 

problem from the 2006 final.  

When you've succeeded in implementing such a problem or extension, send your working code to the 

6.034 staff. Your reward: either a 1-to-3-day extension (depending on difficulty) on one of the previous 

or future labs, possibly erasing any late penalties. Or if your lab grade is already perfect, praise and 

recognition from the 6.034 staff.  

Learning  

Now for something completely different: learning!  

Classifying Congress  

During Obama's visit to MIT, you got a chance to impress him with your analytical thinking. Now, he 

has hired you to do some political modeling for him. He seems to surround himself with smart people 

that way.  

He takes a moment out of his busy day to explain what you need to do. "I need a better way to tell which 

of my plans are going to be supported by Congress," he explains. "Do you think we can get a model of 

Democrats and Republicans in Congress, and which votes separate them the most?"  

"Yes, we can!" You answer.  

The Data  

You acquire the data on how everyone in the previous Senate and House of Representatives voted on 

every issue. (These data are available in machine-readable form via voteview.com. We've included it 

in the lab directory, in the files beginning with H110 and S110.)  

data_reader.py contains functions for reading data in this format.  
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read_congress_data("FILENAME.ord") reads a specially-formatted file that gives 

information about each Congressperson and the votes they cast. It returns a list of dictionaries, one for 

each member of Congress, including the following items:  

 'name': The name of the Congressperson.  

 'state': The state they represent.  

 'party': The party that they were elected under.  

 'votes': The votes that they cast, as a list of numbers. 1 represents a "yea" vote, -1 represents 

"nay", and 0 represents either that they abstained, were absent, or were not a member of 

Congress at the time.  

To make sense of the votes, you will also need information about what they were voting on. This is 

provided by read_vote_data("FILENAME.csv"), which returns a list of votes in the same order 

that they appear in the Congresspeople's entries. Each vote is represented a dictionary of information, 

which you can convert into a readable string by running vote_info(vote).  

The lab file reads in the provided data, storing them in the variables senate_people, 

senate_votes, house_people, and house_votes.  

Nearest Neighbors  

You decide to start by making a nearest-neighbors classifier that can tell Democrats apart from 

Republicans in the Senate.  

We've provided a nearest_neighbors function that classifies data based on training data and a 

distance function. In particular, this is a third-order function:  

 First, call nearest_neighbors(distance, k), with distance being the distance 

function you wish to use and k being the number of neighbors to check. This returns a classifier 

factory.  

 A classifier factory is a function that makes classifiers. You call it with some training data as an 

argument, and it returns a classifier.  

 Finally, you call the classifier with a data point (here, a Congressperson) and it returns the 

classification as a string.  

Much of this is handled by the evaluate(factory, group1, group2) function, which you 

can use to test the effectiveness of a classification strategy. You give it a classifier factory (as defined 

above) and two sets of data. It will train a classifier on one data set and test the results against the other, 

and then it will switch them and test again.  

Given a list of data such as senate_people, you can divide it arbitrarily into two groups using the 

crosscheck_groups(data) function.  

One way to measure the "distance" between Congresspeople is with the Hamming distance: the number 

of entries that differ. This function is provided as hamming_distance.  

An example of putting this all together is provided in the lab code:  
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senate_group1, senate_group2 = crosscheck_groups(senate_people) 

evaluate(nearest_neighbors(edit_distance, 1), senate_group1, 

senate_group2, verbose=1) 

Examine the results of this evaluation. In addition to the problems caused by independents, it's 

classifying Senator Johnson from South Dakota as a Republican instead of a Democrat, mainly because 

he missed a lot of votes while he was being treated for cancer. This is a problem with the distance 

function -- when one Senator votes yes and another is absent, that is less of a "disagreement" than when 

one votes yes and the other votes no.  

You should address this. Euclidean distance is a reasonable measure for the distance between lists of 

discrete numeric features, and is the alternative to Hamming distance that you decide to try. Recall that 

the formula for Euclidean distance is:  

[(x1 - y1)^2 + (x2 - y2)^2 + ... + (xn - yn)^2] ^ (1/2)  

 Make a distance function called euclidean_distance that treats the votes as high-

dimensional vectors, and returns the Euclidean distance between them.  

When you evaluate using euclidean_distance, you should get better results, except that some 

people are being classified as Independents. Given that there are only 2 Independents in the Senate, you 

want to avoid classifying someone as an Independent just because they vote similarly to one of them.  

 Make a simple change to the parameters of nearest_neighbors that accomplishes this, and 

call the classifier factory it outputs my_classifier.  

ID Trees  

So far you've classified Democrats and Republicans, but you haven't created a model of which votes 

distinguish them. You want to make a classifier that explains the distinctions it makes, so you decide to 

use an ID-tree classifier.  

idtree_maker(votes, disorder_metric) is a third-order function similar to 

nearest_neighbors. You initialize it by giving it a list of vote information (such as 

senate_votes or house_votes) and a function for calculating the disorder of two classes. It 

returns a classifier factory that will produce instances of the CongressIDTree class, defined in 

classify.py, to distinguish legislators based on their votes.  

The possible decision boundaries used by CongressIDTree are, for each vote:  

 Did this legislator vote YES on this vote, or not?  

 Did this legislator vote NO on this vote, or not?  

(These are different because it is possible for a legislator to abstain or be absent.)  

You can also use CongressIDTree directly to make an ID tree over the entire data set.  
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If you print a CongressIDTree, then you get a text representation of the tree. Each level of the ID 

tree shows the minimum disorder it found, the criterion that gives this minimum disorder, and (marked 

with a +) the decision it makes for legislators who match the criterion, and (marked with a -) the 

decision for legislators who don't. The decisions are either a party name or another ID tree. An example 

is shown in the section below.  

An ID tree for the entire Senate  

You start by making an ID tree for the entire Senate. This doesn't leave you anything to test it on, but it 

will show you the votes that distinguish Republicans from Democrats the most quickly overall. You run 

this (which you can uncomment in your lab file):  

print CongressIDTree(senate_people, senate_votes, 

homogeneous_disorder) 

The ID tree you get here is:  

Disorder: -49 

Yes on S.Con.Res. 21: Kyl Amdt. No. 583; To reform the death tax by 

setting the 

exemption at $5 million per estate, indexed for inflation, and the 

top death 

tax rate at no more than 35% beginning in 2010; to avoid subjecting 

an 

estimated 119,200 families, family businesses, and family farms to 

the death 

tax each and every year; to promote continued economic growth and job 

creation; 

and to make the enhanced teacher deduction permanent.: 

+ Republican 

- Disorder: -44 

  Yes on H.R. 1585: Feingold Amdt. No. 2924; To safely redeploy 

United States 

  troops from Iraq.: 

  + Democrat 

  - Disorder: -3 

    No on H.R. 1495: Coburn Amdt. No. 1089; To prioritize Federal 

spending to 

    ensure the needs of Louisiana residents who lost their homes as a 

result of 

    Hurricane Katrina and Rita are met before spending money to 

design or 

    construct a nonessential visitors center.: 

    + Democrat 

    - Disorder: -2 

      Yes on S.Res. 19: S. Res. 19; A resolution honoring President 

Gerald 

      Rudolph Ford.: 

      + Disorder: -4 
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        Yes on H.R. 6: Motion to Waive C.B.A. re: Inhofe Amdt. No. 

1666; To 

        ensure agricultural equity with respect to the renewable 

fuels standard.: 

        + Democrat 

        - Independent 

      - Republican 

Some things that you can observe from these results are:  

 Senators like to write bills with very long-winded titles that make political points.  

 The key issue that most clearly divided Democrats and Republicans was the issue that Democrats 

call the "estate tax" and Republicans call the "death tax", with 49 Republicans voting to reform 

it.  

 The next key issue involved 44 Democrats voting to redeploy troops from Iraq.  

 The issues below that serve only to peel off homogenous groups of 2 to 4 people.  

Implementing a better disorder metric  

You should be able to reduce the depth and complexity of the tree, by changing the disorder metric from 

the one that looks for the largest homogeneous group to the information-theoretical metric described in 

lecture.  

You can find this formula on page 429 of the reading.  

 Write the information_disorder(group1, group2) function to replace 

homogeneous_disorder. This function takes in the lists of classifications that fall on each 

side of the decision boundary, and returns the information-theoretical disorder.  

Example:  

information_disorder(["Democrat", "Democrat", "Democrat"], 

["Republican", "Republican"]) 

  => 0.0 

information_disorder(["Democrat", "Republican"], ["Republican", 

"Democrat"]) 

  => 1.0 

Once this is written, you can try making a new CongressIDTree with it. (if you're having trouble, keep in 

mind you should return a float or similar)  

Evaluating over the House of Representatives  

Now, you decide to evaluate how well ID trees do in the wild, weird world of the House of 

Representatives.  

You can try running an ID tree on the entire House and all of its votes. It's disappointing. The 110th 

House began with a vote on the rules of order, where everyone present voted along straight party lines. 
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It's not a very informative result to observe that Democrats think Democrats should make the rules and 

Republicans think Republicans should make the rules.  

Anyway, since your task was to make a tool for classifying the newly-elected Congress, you'd like it to 

work after a relatively small number of votes. We've provided a function, 

limited_house_classifier, which evaluates an ID tree classifier that uses only the most recent 

N votes in the House of Representatives. You just need to find a good value of N.  

 Using limited_house_classifier, find a good number N_1 of votes to take into 

account, so that the resulting ID trees classify at least 430 Congresspeople correctly. How many 

training examples (previous votes) does it take to predict at least 90 senators correctly? What 

about 95? To pass the online tests, you will need to find close to the minimum such values for 

N_1, N_2, and N_3. Keep guessing to find close to the minimum that will pass the offline tests. 

Do the values surprise you? Is the house more unpredictable than the senate, or is it just bigger?  

 Which is better at predicting the senate, 200 training samples, or 2000? Why?  

The total number of Congresspeople in the evaluation may change, as people who didn't vote in the last 

N votes (perhaps because they're not in office anymore) aren't included.  

Survey  

Please answer these questions at the bottom of your ps4.py file:  

 How many hours did this problem set take?  

 Which parts of this problem set, if any, did you find interesting?  

 Which parts of this problem set, if any, did you find boring or tedious?  

FAQs  

Q: For the N's for the limited_house_classifier, I got some (large) values, and it passed the offline tests, 

but it failed the online tests. If I subtract even 1 from the values, it doesn't classify enough people 

correctly. What's wrong?  

A: The number of correct classifications is not a monotonic function of N. For example, if N_1 is 60, 

then 426 representatives are classified correctly, but if N_1 is 40, then 428 representatives are classified 

correctly. The online tests are not exactly the same as the offline tests. You will need to just try smaller 

values of N.  

Q: My code passes the offline eval_test but not the online one.  

A: Make sure you did the part of the lab where you adjust the nearest-neighbors parameters (for 

my_classifier) to avoid classifying too many people as Independents.  
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