Matrix exponential, ZIR+ZSR, transfer function, hidden modes, reaching target states

6.011, Spring 2018

Lec 8

Modal solution of driven DT system

$$
\begin{array}{rr}
\mathbf{q}[n+1]=\mathbf{V} \boldsymbol{\Lambda} \underbrace{\mathbf{V}^{-1} \mathbf{q}[n]}_{\mathbf{r}[n]}+\mathbf{b} x[n], & y[n]=\mathbf{c}^{T} \mathbf{q}[n]+\mathrm{d} x[n] \\
& \downarrow \\
\mathbf{r}[n+1]=\boldsymbol{\Lambda} \mathbf{r}[n]+\underbrace{\mathbf{V}^{-1} \mathbf{b}}_{\beta} x[n], & y[n]=\underbrace{\mathbf{C}^{T} \mathbf{V}}_{\xi^{T}} \mathbf{r}[n]+\mathrm{d} x[n]
\end{array}
$$

Because $\boldsymbol{\Lambda}$ is diagonal, we get the decoupled scalar equations

$$
r_{i}[n+1]=\lambda_{i} r_{i}[n]+\beta_{i} x[n], \quad y[n]=\left(\sum_{1}^{L} \xi_{i} r_{i}[n]\right)+\mathrm{d}[n]
$$

Underlying structure of LTI DT statespace system with L distinct modes

Reachability and Observability

$$
\begin{array}{r}
r_{i}[n+1]=\lambda_{i} r_{i}[n]+\beta_{i} x[n], \quad y[n]=\left(\sum_{1}^{L} \xi_{i} r_{i}[n]\right)+\mathrm{d}[n] \\
\text { for } i=1,2, \ldots, L
\end{array}
$$

$\beta_{j}=0$, the j th mode cannot be excited from the input i.e., the j th mode is unreachable
$\xi_{k}=0$, the k th mode cannot be seen in the output i.e., the k th mode is unobservable

Hidden modes

$$
H(z)=\left(\sum_{i=1}^{L} \frac{\beta_{i} \xi_{i}}{z-\lambda_{i}}\right)+\mathrm{d}
$$

Any modes that are unreachable $\left(\beta_{i}=0\right)$ or/and unobservable $\left(\xi_{i}=0\right)$ are "hidden" from the input-output transfer function.

ZIR + ZSR

$$
r_{i}[n]=\lambda_{i} r_{i}[n-1]+\beta_{i} x[n-1]
$$

$$
\begin{aligned}
& \downarrow \\
& r_{i}[n]=\underbrace{\left(\lambda_{i}^{n}\right) r_{i}[0]}_{Z I R}+\underbrace{\sum_{k=1}^{n} \lambda_{i}^{k-1} \beta_{i} x[n-k]}_{Z S R}, \quad n \geq 1 \\
& \downarrow \\
& \text { - } \mathbf{q}[n]=\sum_{i=1}^{L} \mathbf{v}_{i} r_{i}[n]
\end{aligned}
$$

More directly ...

$$
\mathbf{q}[n]=\mathbf{A} \mathbf{q}[n-1]+\mathbf{b} x[n-1]
$$

$$
\mathbf{q}[n]=\underbrace{\left(\mathbf{A}^{n}\right) \mathbf{q}[0]}_{Z I R}+\underbrace{\sum_{k=1}^{n} \mathbf{A}^{k-1} \mathbf{b} x\left[\begin{array}{ll}
n & k
\end{array}\right]}_{Z S R}, \quad n \quad 1
$$

(linear jointly in initial state and input sequence)

Similarly for CT systems

$$
\dot{r}_{i}(t)=\lambda_{i} r_{i}(t)+\beta_{i} x(t)
$$

$$
r_{i}(t)=\underbrace{\left(e^{\lambda_{i} t}\right) r_{i}(0)}_{Z I R}+\underbrace{\int_{0}^{t} e^{\lambda_{i} \tau} \beta_{i} x(t-\tau) d \tau}_{Z S R}, \quad t \geq 0
$$

$$
\mathbf{q}(t)=\sum_{i=1}^{L} \mathbf{v}_{i} r_{i}(t)
$$

Decoupled structure of CT LTI system in modal coordinates

More generally

$$
\mathbf{q}(t)=\underbrace{\left(e^{\mathbf{A} t}\right) \mathbf{q}(0)}_{Z I R}+\underbrace{\int_{0}^{t} e^{\mathbf{A} \tau} \mathbf{b} x\left(\begin{array}{ll}
t & \tau) d \tau
\end{array}, \quad t \quad 0.00 .\right.}_{Z S R}
$$

where

$$
e^{\mathbf{A} t}=\mathbf{I}+\mathbf{A} t+\mathbf{A}^{2} \frac{t^{2}}{2!}+\mathbf{A}^{3} \frac{t^{3}}{3!}+\cdots
$$

$$
=\mathbf{V} e^{\boldsymbol{\Lambda} t} \mathbf{V}^{-1}
$$

Key properties of matrix exponential

$$
e^{\mathbf{A} \cdot 0}=\mathbf{I}
$$

$$
\frac{d}{d t} e^{\mathbf{A} t}=\mathbf{A} e^{\mathbf{A} t}=e^{\mathbf{A} t} \mathbf{A}
$$

$$
e^{\mathbf{A} t_{1}} e^{\mathbf{A} t_{2}}=e^{\mathbf{A}\left(t_{1}+t_{2}\right)}
$$

but $e^{\mathbf{A}_{1}} e^{\mathbf{A}_{2}} \neq e^{\mathbf{A}_{1}+\mathbf{A}_{2}}$
unless the two matrices commute

In the transform domain ...

The matrix extension of

$$
e^{a t} \leftrightarrow \frac{1}{s \quad a}
$$

is

$$
e^{\mathbf{A} t} \leftrightarrow(s \mathbf{I} \quad \mathbf{A})^{-1}
$$

Input-output transfer function:

$$
H(s)=\mathbf{c}^{T}\left(^{2} s \mathbf{I} \quad \mathbf{A}\right)^{-1} \mathbf{b}+\mathrm{d}
$$

Reaching a target state from the origin (e.g., in a $2^{\text {nd }}-$ order system)

$$
\mathbf{q}[n+1]=\mathbf{A q}[n]+\mathbf{b} x[n], \mathbf{q}[0]=\mathbf{0}
$$

$$
\mathbf{b}=\mathbf{v}_{1} \beta_{1}+\mathbf{v}_{2} \beta_{2}
$$

Reaching a target state in 2 steps:

$$
\begin{aligned}
& \mathbf{q}[2]=\mathbf{v}_{1} \gamma_{1}+\mathbf{v}_{2} \gamma_{2} \\
& \Downarrow \\
& {\left[\begin{array}{l}
x[1] \\
x[0]
\end{array}\right]=\left[\begin{array}{ll}
1 & \lambda_{1} \\
1 & \lambda_{2}
\end{array}\right]^{-1}\left[\begin{array}{cc}
\beta_{1} & 0 \\
0 & \beta_{2}
\end{array}\right]^{-1}\left[\begin{array}{l}
\gamma_{1} \\
\gamma_{2}
\end{array}\right]} \\
& \left.=1 \begin{array}{cc}
\lambda_{2} & -\lambda_{1} \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
\gamma_{1} / \beta_{1} \\
\gamma_{2} / \beta_{2}
\end{array}\right] .
\end{aligned}
$$

MIT OpenCourseWare
https://ocw.mit.edu
6.011 Signals, Systems and Inference

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

