Power Spectral Density (PSD)

6.011, Spring 2018

Lec 18

iid signal $x[n]$, uniform in [-0.5,+0.5]

y[.] obtained by passing $x[$.$] through$ resonant $2^{\text {nd }}-$ order filter H(z), poles at $\pm 0.95 e \wedge\{j \pi / 3\}$

Extracting the portion of $x(t)$ in a specified frequency band

Questions (warm-up for Quiz 2!)

WSS process $x[\cdot]$ with

$$
C_{x x}[m]=\rho \delta[m-1]+\delta[m]+\rho \delta[m+1]
$$

What is the largest magnitude ρ can have?

WSS process $x(\cdot)$ with mean μ_{x} and PSD $S_{x x}(j \omega)$. What is its FSD?

Zero-mean WSS process $x(\cdot)$ with

$$
S_{x x}(j \omega)=\frac{1}{1+\omega^{2}}
$$

and let $y(t)=Z+x(t)$, where Z has zero mean, variance σ^{2}, and is uncorrelated with $x(\cdot)$.

What are μ_{y} and $S_{y y}(j \omega)$?

Periodograms

 (e.g., a unit-intensity "white" process)

CT case: $\quad X_{T}(j \omega) \leftrightarrow x(t)$ windowed to $[-T, T]$

$$
\text { Periodogram }=\frac{\left|X_{T}(j \omega)\right|^{2}}{2 T}
$$

DT case: $\quad X_{N}\left(e^{j \Omega}\right) \leftrightarrow x[n]$ windowed to $[-N, N]$

$$
\text { Periodogram }=\frac{\left|X_{N}\left(e^{j \Omega}\right)\right|^{2}}{2 N+1}
$$

Periodogram averaging (illustrating the Einstein-Wiener-Khinchin theorem)

Periodogram averaging (illustrating the Einstein-Wiener-Khinchin theorem)

MIT OpenCourseWare
https://ocw.mit.edu
6.011 Signals, Systems and Inference

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

