LMMSE estimation, orthogonality

6.011, Spring 2018

Lec 14

LMMSE estimator: first step (obtaining unbiasedness)

Linear estimator: $\widehat{Y}_{\ell}=a X+b, \quad$ with a and b picked to minimize $\quad E\left[\left(Y-\widehat{Y}_{\ell}\right)^{2}\right] \quad$ over joint density of X and Y

$$
\Rightarrow \min _{a, b} E[(\underbrace{Y-a X}_{Z}-b)^{2}]
$$

First $\min _{b} E\left[(Z-b)^{2}\right] \quad \Rightarrow \quad b=\mu_{Z}=\mu_{Y}-a \mu_{X}$

This yields an unbiased estimator: $E\left[\widehat{Y}_{\ell}\right]=E[Y]=\mu_{Y}$

LMMSE estimator:

 second step (solve reduced problem)Now $\min _{a} E\left[(Y-a X-b)^{2}\right]=E[(\{\underbrace{Y-\mu_{Y}}_{\widetilde{Y}}\}-a\{\underbrace{X-\mu_{X}}_{\widetilde{X}}\})^{2}]$

$$
\begin{aligned}
& \text { i.e. } \quad \min _{a} E\left[(\widetilde{Y}-a \widetilde{X})^{2}\right] \\
& \Rightarrow \quad a=\frac{\sigma_{Y X}}{\sigma_{X}^{2}}=\rho_{Y X} \frac{\sigma_{Y}}{\sigma_{X}}
\end{aligned}
$$

(can be shown in different ways, e.g., by vector picture)

LMMSE estimator as projection

For the optimum $a, \quad(\widetilde{Y}-a \widetilde{X}) \perp \widetilde{X}$

$$
\begin{aligned}
& \text { i.e., } \quad E[(\widetilde{Y}-a \widetilde{X}) \widetilde{X}]=0 \\
& \Rightarrow \quad a=\frac{\sigma}{\sigma_{X}^{2}}=\rho_{Y X} \frac{\sigma}{\sigma_{X}}
\end{aligned}
$$

Putting it all together

$$
\widehat{Y}_{\ell}=\widehat{y}_{\ell}(X)=\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(X-\mu_{X}\right)
$$

or equivalently $\quad \frac{\widehat{Y}_{\ell}-\mu_{Y}}{\sigma_{Y}}=\rho \frac{X-\mu_{X}}{\sigma_{X}}$

Also, the resulting MMSE is $\sigma_{Y}^{2}\left(1-\rho^{2}\right)$

Orthogonality relations

Unbiasedness condition can be written as $Y-\widehat{Y}_{\ell} \perp 1$

$$
\text { (or } \perp \text { to any constant) }
$$

$$
\text { We also know }(\tilde{Y}-a \tilde{X}) \perp \widetilde{X}
$$

or equivalently $\quad Y-\widehat{Y}_{\ell} \perp \widetilde{X}$
or equivalently $\quad Y-\widehat{Y}_{\ell} \perp X$

Conversely, first + last above yield equations for a, b

Extension to multivariate case

$$
\min _{\iota_{0}, \ldots, a_{L}} E[(Y \quad\{\underbrace{a_{0}+\Sigma_{j=1}^{L} a_{j} X_{j}}_{\widehat{Y}_{\ell}}\})^{2}]
$$

First $\min _{a_{0}} \Rightarrow a_{0}=\mu_{Y}-\Sigma_{j=1}^{L} a_{j} \mu_{X_{j}}$

This ensures unbiasedness of the estimator.

Now $\min _{a_{1}, \ldots, a_{L}} E\left[\left(\tilde{Y}-\Sigma_{j=1}^{L} a_{j} \widetilde{X}_{j}\right)^{2}\right]$

Applying orthogonality gives the "normal equations"

$$
E\left[\left(\widetilde{Y}-\Sigma_{j=1}^{L} a_{j} \widetilde{X}_{j}\right) \widetilde{X}_{i}\right]=0
$$

$\left[\begin{array}{cccc}\sigma_{X_{1} X_{1}} & \sigma_{X_{1} X_{2}} & \cdots & \sigma_{X_{1} X_{L}} \\ \sigma_{X_{2} X_{1}} & \sigma_{X_{2} X_{2}} & \cdots & \sigma_{X_{2} X_{L}} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{X_{L} X_{1}} & \sigma_{X_{L} X_{2}} & \cdots & \sigma_{X_{L} X_{L}}\end{array}\right]\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{L}\end{array}\right]=\left[\begin{array}{c}\sigma_{X_{1} Y} \\ \sigma_{X_{2} Y} \\ \vdots \\ \sigma_{X_{L} Y}\end{array}\right]$
$\left(\mathbf{C}_{\mathbf{X X}}\right) \mathbf{a}=\mathbf{c}_{\mathbf{X} Y}$

MMSE: $\quad \sigma_{Y}^{2}-\mathbf{c}_{Y_{8}} \mathbf{X}\left(\mathbf{C}_{\mathbf{X X}}\right)^{-1} \mathbf{c}_{\mathbf{X} Y}=\sigma_{Y}^{2}-\mathbf{c}_{Y \mathbf{X}} \cdot \mathbf{a}$

MIT OpenCourseWare
https://ocw.mit.edu
6.011 Signals, Systems and Inference

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

