Vector picture for first- and second-order statistics; MMSE and LMMSE estimation

6.011, Spring 2018

Lec 13

Covariance and correlation

Covariance: $\quad \sigma_{X, Y}=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]$

$$
=\underbrace{E[X Y]} \quad-\mu_{X} \mu_{Y}
$$

Correlation $r_{X, Y}$

Shorthand notation: $\quad \sigma_{X Y}, r_{X Y}$

Correlation coefficient

Effect of shifting and scaling: If $V=\alpha(X-\beta)$

$$
\text { then } \mu_{V}=\alpha\left(\mu_{X}-\beta\right), V=\alpha \sigma_{X}
$$

If $W=\gamma(Y-\delta)$ then $\quad \sigma_{V W}=\alpha \gamma \sigma_{X Y}$

For a shift- and scale-invariant measure:

$$
\rho_{X Y}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}=\rho_{V W}
$$

A geometric picture

Think of X and Y as vectors, with inner product $E[X Y]$

$$
\mu_{X}=E[X .1]: \text { inner product of } X \text { and "random variable" } 1
$$

$$
E\left[X^{2}\right]: \text { squared length of } X
$$

$\widetilde{X}=X-\mu_{X}:$ vector difference between X and "random variable" μ_{X}

$$
\sigma_{X}: \text { length of } \tilde{X}
$$

Geometric interpretation of correlation coefficient

Orthogonality

$$
E[X Y]=0
$$

Correlation is 0 , but not uncorrelated!

Uncorrelated $=$ zero covariance, i.e., $E[X Y]=E[X] E[Y]$

MIT OpenCourseWare
https://ocw.mit.edu
6.011 Signals, Systems and Inference

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

