Vector picture for first- and second-order statistics; MMSE and LMMSE estimation

1

6.011, Spring 2018 Lec 13

Covariance and correlation

Covariance: $\sigma_{X,Y} = E[(X - \mu_X)(Y - \mu_Y)]$

Shorthand notation: σ_{XY}, r_{XY}

Correlation coefficient

Effect of shifting and scaling: If
$$V = \alpha(X - \beta)$$

then $\mu_V = \alpha(\mu_X - \beta)$, $V = \alpha \sigma_X$

If
$$W = \gamma(Y - \delta)$$
 then $\sigma_{VW} = \alpha \gamma \sigma_{XY}$

For a shift- and scale-invariant measure:

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y} = \rho_{VW}$$

A geometric picture

Think of X and Y as vectors, with inner product E[XY]

 $\mu_X = E[X.1]$: inner product of X and "random variable" 1

 $E[X^2]$: squared length of X

 $\widetilde{X} = X - \mu_X$: vector difference between X and "random variable" μ_X

 σ_X : length of \widetilde{X}

Geometric interpretation of correlation coefficient

Orthogonality

E[XY] = 0

Correlation is 0, but not uncorrelated!

Uncorrelated = zero **covariance**, i.e., E[XY] = E[X]E[Y]

MIT OpenCourseWare https://ocw.mit.edu

6.011 Signals, Systems and Inference Spring 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.