
MITOCW | watch?v=TeVSxZgIHAA
The following content is provided under a Creative Commons license. Your support will help MIT
OpenCourseWare continue to offer high quality educational resources for free. To make a donation, or view
additional materials from hundreds of MIT courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: I wanted to give a lecture, because as I told you in presentations, I love feedback. In fact, I

love it so much, that I think the examples we're going to do, we can do analytically are not

maybe sufficiently compelling for you to believe how exciting control can be. So let me just

start by giving a few minutes of a research result we had a few years ago.

That's why you've got color images-- everybody noticed the color images on the slides. I

brought this robot in to the first recitation of [INAUDIBLE]. It's a big 2 meter wing span

ornithopter, and in my case, we've been trying to design control systems to make airplanes

move more like birds. Here's one example of that. One thing birds do that planes don't do very

well is land on a perch. So we asked the question, can we take a simple airplane with fixed

wings, no flapping allowed, and make it land on a perch-- UAV stands for unmanned aerial

vehicle-- land on a perch like a bird.

The story I want to tell you is that with feedback design, you can.

Here's why it's interesting and hard. The reason airplanes don't land on a perch is because,

when your wing is at a low angle, which a plane normally is when it's flying, the air flow around

the wing is relatively easy to model. It's easy to write a block diagram description of. But if you

go to moderate angles, that's still true. The air stays attached to the wings and everything--

[INAUDIBLE]

At a low angle, the air is still attached to the wing, and so we have very good models of the

airflow around here, and the lift and drag forces that you get when you're flying in these

regimes. But if you go up too far, like this, then everything changes. So you think, the air can't

quite stay around the wing. You get separation. You get big vortices pulling off the back. It's

very nonlinear, very unsteady. Very complicated flight regime. And as such, our best aircrafts

to date mostly stay down in this regime where we have good models and we can design

conventional control systems for.

But birds don't do that at all. So birds are, often, when they're landing on a perch, they're up

even far beyond this. Maybe even 90 degrees. "Angle of attack", it's called. They're way into

this deep stall regime-- that's called stalling your wings when that happens. And it seems like

they're doing a lot better landing on a perch because we don't see our airplanes do it.



But you can actually try to quantify that. So if you want to compare the performance of a bird

landing versus a plane landing, the first thing you have to do is you have to take out the

differences in mass and wing area and all these things. But you can do that. And a fair

comparison is the distance averaged drag coefficient, which is just a way to scale out the

effects that you'd expect from having a bigger wing or a bigger mass. You can plot this drag

coefficient for a few different vehicles.

This is a standard runway landing of a 747, would get the drag coefficient, just so you have

some calibration, of about a 0.16. The X-31 was a super maneuverable research vehicle. It

was designed to do super short runway landings, and it got a drag coefficient during those

landings of about 0.3. There's a few other projects out there about trying to make perching

planes that were getting similar numbers.

But then we went out and looked at nature. I have some collaborators at Harvard that work

with real birds. It turns out-- I wanted him to tell me the numbers from some really elite bird,

like at least a hawk or something like this. But they work on pigeons. So that was the only

number we could get, was a pigeon. They actually convinced me by the end that pigeons are

really good. The way they can sort of dive through the fence and get your lunch by the food

trucks? I mean, that's actually-- they're seriously skilled birds.

We even had-- one of the fun things about doing this kind of research is you get visitors. We

had will.i.am from the Black Eyed Peas come to the lab. And he said-- after we told him the

story, he said pigeons are ghetto birds. They got mad stop. That sort of summarizes it.

You already know the answer. But if you look at the drag coefficient that a bird gets when it's

landing, they get a 10. So they're doing orders of magnitude better than our best planes in

terms of stopping. If you just want to be fun about it, you could say, what would it take for a

747 to get a 10 to impress will.i.am. And it turns out that 747 would have to go-- they fly at

about 450 miles an hour cruise speed. It would have to stop in 40 meters to do what a bird's

doing. The wings would probably pop off. There's problems with that. But the dynamics are

impressive, of the birds.

And what's more, when they're doing that, they're getting incredible accuracy. This is one of

my favorite videos of a perching owl. If you watch really closely, you can see the airflow get

complicated on his wings. You can see his leading edge feathers start to flip over. Boom. The

way you do that is you put food by the camera.



way you do that is you put food by the camera.

We tried to build these simple planes and ask if could they do what the owls are doing, what

the pigeons are doing. Very simple planes. We did them in an indoor environment. We made it

so it was basically a boring plane, but it can do very interesting things in pitch, up and down.

Then we spent some time trying to build a dynamical systems representation of the plane. And

how do you do that? Well, you shoot the plane a bunch of times into a fishing net. And you

collect a bunch of data. And like we talked about in recitation, you can potentially get from that

data a model of the dynamics. And turns out, we had to do a nonlinear dynamical model for

the vehicle, but we could do a linear actuator model plus delays and everything. We built a

pretty good model of the plane, which is sort of-- for an aerodynamics crowd, this would tell

you that this is a surprisingly good fit to the lift and drag forces over a very large range of

angles.

Then we had a 6003 problem, basically. The nonlinear terms make it a little different. And

what we did as a group was we innovated a way to design a feedback controller that could

make this thing very accurate during very high performance maneuvers. And a long story

short, we can now shoot an airplane into a motion capture arena. This is slowed down about

11 times. It's this airplane right here. And it goes into a very deep stall. And we can land with

an accuracy, enough accuracy to land on a perch.

It turns out if you can build a good enough control system that can handle the complexity of

the dynamics, then you can make these things happen. This is just-- to convince you that the

dynamics are complicated, this is the flow visualization. We built a wind tunnel releasing smoke

from the leading edge and took a picture of it to show you how complicated the dynamics

were.

So control is potentially an incredibly powerful idea. You can make-- we try to make robots that

run like ostriches. We try to make all kinds of things happen. You could imagine improving

wind energy. You could imagine all kinds of things where control is an integral part of it.

The feedback in there was absolutely essential. If I took the same plane and thought about the

model a lot and then designed a controller, just a set of commands to the elevator, to try to

make it land on the perch, it misses the perch every single time. And with feedback, we can

hit-- it's only with feedback that we can hit the perch every single time. And there's a reason

for that.



You guys probably heard the idea that fighter jets are unstable without the control system,

right? Fighter jets are-- a lot of times, the systems that have peak maneuverability, that's often

at odds with stability. In fact, when you try to make a very high performance fighter jet, and

you want to be able to turn, you actually-- if the control system is off, this thing should be

unstable. It's not a complete pathology, but that's pretty true, because what you want, you can

elicit a very fast turn if you basically let the system go unstable. Then you can let the unstable

dynamics of the system make a very rapid turn. In fact, it's common to build a system that is

unstable, and it's only stable when there's feedback in the loop so that you can have very high

maneuverability when you need it.

You've already done feedback if you took 601, right? So what I want to do today is-- I taught

601 when some of you were in there. I want to go through the example that you already

worked through in the 601 lab for those of you that took it. I think it's sufficiently complete here

if you didn't take it. But we want to use that-- I'm going to use that as an example to build on

what you already know and to show us with the new tools how far you can get in thinking

about what that robot did for you last year. Do you remember this example of the little pioneer

robot that had to go to the wall, the foam wall, using the noisy sonar sensor? And we wanted

to get a desired distance from the wall? And by the end, you guys were moving the board

around and it was trying to track the wall?

In that exercise, in the 601 lab, you guys tried a bunch of different gains. For some gains, we

saw responses that sort of looked like this. If you gave a desired distance to a wall, it would go

up to that desired distance. For other gains, you saw some oscillation. You saw some big

oscillations if you tried all the gains we recommended. Now you guys have a deep

understanding of what kind of things can cause that type of response.

The way we told you to think about it in 601 is actually the way that we often think about

control systems. Typically, we have something called the plant, which describes the dynamics

of the robot or the thing we're trying to care about. You guys know why it's called the plant

often? What would be the history of calling it "plant"? It's a weird name for it, right? Actually,

some of this stuff grew up in the chemical industry, in chemical plants. Is that what you said?

No? It's actually-- it has a history in chemical plants. But now everybody calls their robot

plants.

The plant is the dynamics of our robot, for instance. You've got some output of that. In this

case, it's the position to the wall. A sensor that reads it. It may have its own dynamics. And



your goal is to take some reference command, a position you want to go to, let's say, compare

it with what the sensor is saying and build a controller that takes that error and makes the

robot or control system do what you want it to do.

In this example, the one you studied in 601, the plant was a very simple model of the

dynamics of the robot. It was just a first-order model. We said that the output, the distance

from the wall, the distance in front of the wall, at time n was just the distance in front of the wall

time minus-- because, you remember the frustration of the flipped sign, too? But I kept it

consistent here. So it's T times the velocity, just happens that since the velocity is going this

way and the distance is getting smaller, you get a minus T. This looks almost like the first-

order approximation of a CT system, right? So that's the dynamics of the vehicle.

The sensor, we're going to assume for now, is just perfect, that it just immediately tells me the

distance to the wall and gives the perfect feedback. And then we designed a controller, which

just takes the error, the difference between the desired position and the actual position,

multiplies it by a constant K and comes up with a velocity command that goes to the motors.

You can visualize that as a block diagram, of course. You get that this plant model here-- it's

got a minus one here and a minus one here, so that's equivalent having a delay in the forward

path. And then it's got feedback, because the previous signal was directly put around to the

feedback. So this part here is the model of the plant. Then we put the T in, with a gain here, so

I guess this part here is the plant. Here's our simple controller and our sensor is perfect. So

that's our block diagram. We've just turned our robot into a block diagram. And we know

everything about how to analyze those things. You can use the operator notation. You could

think of it as a system function, too.

This guy here you know is-- you guys can do this in your sleep now, almost? But if I just take

that by itself, what does that come out to? It's a plus here. This is x and y. So I get y is R x plus

y. Or y over x is R over 1 minus R. Then I multiply that by K and a negative t. And then I do the

exact same computation again to get this loop around. And this is our input output system

function. Simplify it a little bit, I get this. Simplify it a little bit more to identify the pole, and you

can see that the pole now looks like 1 plus KT. T represents the time step between updates, K

is our feedback gain.

Now, we can start thinking about what happens if we choose different-- let's just lump K and T

together, because the K you choose is going to be intimately connected to time. In this system,



there's no point in separating them. So we just talk about KT as a system. If we chose KT-- KT

is almost always going to be negative. You want negative feedback, in general, for making

things stable. If we choose KT equals 0.5, then with that system function, there's a delay in the

forward path, so it's going to be offset by one and then it's just got the simple single pole

response. The unit step response similarly looks like this. So the question is, what determines

the speed of that response?

Here you go. I have to get you to talk to your neighbor the way Denny always seems to get

you to talk to your neighbor. Take a minute. Figure out which of these or none of them do you

think would give you the best response for this simple block diagram system. Talk out loud to

your neighbor.

OK. Show of fingers, what do you think it is? OK. A lot of right answers. Let's just do it real

quick. The fastest possible convergence is going to be at the pole zero. Pole zero, what's it

going to look like? It's going to give you-- the best you can do if you zero this out, you get the

impulse response. The unit sample response would just be R. You're going to have a delay of

1, that's inevitable. You get one non-zero entry and then zeroes everywhere else. In discrete

time systems, you can actually kill things in a single step. You can set a pole at 0 that's the

fastest possible response.

But if you think about the different responses for different values of K, you can use the pole

zero diagrams to pretty much understand everything there is to know about it. For KT less

than 0 to negative 1-- like I said, we want to think about negative feedback-- that's going to

take us from out here on the unit circle back towards the origin. If I keep making KT more

negative, it's going to go out here. If I make KT too negative, bad things are going to happen

again. The poles are going to go outside the unit circle and will actually have alternating

diverging responses. The answer is negative 1. Negative 1 puts you at a pole of 0.

Here's to think about it physically. If I choose K correctly, since KT was negative 1, that means

K's going to be negative 10. That's going to be commanding exactly the right speed so that the

robot, after the one tenth of a second, let's say, it gets you exactly to the right position. Unit

sample response in this case would be saying, the robot's at zero, I want it to be at 1, and then

I want it to be back at zero. The command is going 0, 1, 0. And the robot is going to be almost

doing exactly that. It's going to go from 0 to 1 in a single step. And then back to 0 in a single

step. It's just going to be delayed by one. So you give it a command saying, go here, go here,



go back. And it's going to do exactly the right thing-- boom, boom, except for one step

delayed, because you can't get rid of that R.

So if I plot it-- let me draw a stem diagram, but coming down in time so that I can line up with

the axes up here. If I start with an initial position here, and I command it to go to the desired

front position, it's going to go boom right to that front position with one unit of delay. And then

it's going to stay there for the rest of the time. It would be a unit step response.

But that's not what we got to see on the robots in 601, right? The real robot didn't work like

that. And the way we made the robot model more realistic was we said, OK, but your sensor's

got some delay. And actually, if you knew what was going on behind those 601 robots, it's

actually had a lot of delay. There's Python running serial interfaces to over the serial link to the

fairly old controller in the pioneer robot. So the delay is real. There's a delay of about 1/10 of a

second in the sensor.

If I take that exact same controller, exact same gain that I already did, now put it in this new

system that has an extra delay, then what happens? I get a velocity of 10 after one step, looks

good. But then, uh-oh, there was some delay in the sensor I didn't realize was here, so I'm still

going to take corrective action trying to get me there. It's going to move me all the way to the

wall, smash into the wall, and then it's going to realize it was zero. It's going to-- there's some

delay in seeing that. It's going to move me back. And you're going to get oscillations.

You can see that now by just adding the model to our block diagram. If we put the delay now

in the feedback path, otherwise, keep the block diagram exactly the same. Now, you can write

the system function. What's the resulting system function given that this thing is in the

feedback path?

Go ahead and put your fingers up when you think you've got it. All right. Fantastic.

Just like I did here, you can just quickly replace the accumulator there with the equivalent

block diagram. Do the loop again. It's going to be exactly what we did before, but it's got a new

R in the feedback path. Giving us the R-squared here, just on the feedback path. It's exactly

the same otherwise except for that R, and that simplifies out to this. So the answer was 4.

That's just operator notation, polynomial algebra.

If we want to find the poles of that system, we can just go ahead and factor the quadratic form

in the denominator. The roots of the denominator look something like this, which is a little ugly



to think about. But we can think it through. For general KT-- when KT's small, KT's about zero,

then I'll go ahead and simplify that a little bit to say, KT could sneak inside the-- KT and KT-

squared aren't so different. We're going to sneak it inside here. And then you can see that the

poles end up at-- around K equal to zero you get a pole at the origin. But you also get a pole

up by the unit circle. Around 1 and around 0.

Remember, when you've got multiple poles in the system, the total response is going to be

dominated by whatever is the slower pole. The total system response is going to be dominated

by the slower pole. In this case, the slower pole's the one closer to the unit circle.

What about if KT equals negative 0.25? We can pop that in and solve it. Exactly-- math works

out nicely. We get poles at a half, two poles at a half. And in fact, there's a smooth transition

between-- if you look at the numbers between KT equals zero and KT equals 0.25, you'll see

as you vary that gain, the poles move together along the real axis until they come together at

a half. So here, you've got a purely real response dominated by these poles at a half.

System's stable. If you keep changing K though, the poles came together and then they split

off and start going this way. And in fact, if you look at negative 1, which is the one that was the

best response, it put a pole exactly at 0, for the system with no delay. If you put it at the

system with delay, they land exactly on the unit circle. Right there. Complex poles on the unit

circle. You're going to get a stable oscillation. Which is exactly what we saw there.

Just a quick-- you know this like the back of your hand now, but what's the period of that

oscillation? You've got two poles on the unit circle right there. What's the period of oscillation?

Put your fingers up when you think you know. Yep. Good. Most people got it. This thing was a

half, so it's 1/2 square root of 3 over 2. So that thing had to be at pi over 3. It's actually the

same pole that I was using in recitation yesterday. So if you have a pole at pi over 3, it makes

it around in six steps. The period of the oscillation is six.

This is generally true, that if you put a controlled gain, a feedback gain, into the closed loop

dynamics, then even a simple gain can allow you to really shift around the poles of the system.

And since we know the response of the system, the zeros matter, but for convergence, for the

rate of convergence, it's the biggest pole that dominates. It's very nice to understand how

those poles move with K. If you change the system, the way they move with K is different. And

you can just change K to tune the response to be what you want, from KT equals 0 to infinity,

the poles go towards here and then off in both directions, actually, to infinity.



So, KT equals negative 1 was the fastest possible response for the system without any delay

in the sensor. What's the fastest possible response for this one?

Oscillations are allowed. I just want the fastest possible response.

Yeah. Looks good. So where do I want the poles to be for the fastest possible response?

These poles are still stable and oscillations are fine, but the absolute-- the magnitude of those

poles is larger when they're out here in the complex. When I'm down here, I have got a pole

over by one, that's going to dominate. So the best I can do is if I put the poles at a half. That

gives us the largest pole, the smallest possible magnitude. And that happened if the poles--

the double poles at a half happened when KT was negative 0.25. Most of you said, the answer

is 2.

In general, delay is a bad thing. In DT systems, we have good representations of delay. It's

even worse in continuous time. Delay is a bad thing. It tends to make control systems not work

as well. If you just took the ideal sensor, we had a K equals 1, we had a response that started

here, we could put it anywhere we wanted along the real axis. As far negative as we wanted,

of course, what we chose was to put it right at the origin. But as soon as we just added that

one piece of delay, the things we could do with proportional feedback changed completely,

and ultimately, got worse because I have two poles now, first of all, and I can't simultaneously

get both of those poles to go to zero. In fact, as I change them, they go off into complex. The

fact that it's complex isn't bad. But the fact that there's two of them, and the best I can do now

is get to a half, which is a much slower response, the best possible response.

If I added even more delay, things get even worse. If I had two units of delay and I went

through the same exercise, what you'd see is that the poles would start in the same place.

They'd come together and go there, and there's another pole that goes off. Just because

there are three poles in that system. Two poles come together and split off this way. And this

one goes off this way. And the place you probably want, depending on how fast this one splits

off, but the place you probably want to put it is when the two poles are together right there.

That's going to give you the fastest response. But that fastest response is still slower than

what we had-- it's a bigger number than a half. It's 0.682. It's going to be a worse response



than when I had a delay of one, which is intuitive.

That's a quick reminder of something you already did in 601, of using feedback and the tools

we've already got, which is poles and zeros and everything, to understand how to design

feedback gains. We're going to get more into it in the next couple of lectures. But let me just

convince you that this stuff is real. And I showed this diagram once in 601, but it probably

means even more to you now. This is an F-14. It's one of the best modern engineering control

systems ever built. It was built for this F-14. They got more research money and modeling this

vehicle, designing ultimate gains for it. It's such a success story that you can actually, if you're

in MATLAB, you can open up the F-14 demo and see what a flight control system for an F-14

looks like.

MATLAB-- I don't know if you've played with Simulink-- MATLAB has a language called

Simulink, a graphical language that allows you to draw the block diagrams and simulate them

and even design controllers for them. And it turns out you can make a block diagram

description of an F-14 using only tools from 601 and 6003. You can see all the same adders

and gains, transfer functions, system functions like this. The only essential difference is that in

some of the diagrams, you see multiple inputs coming in. In this class, we've restricted

ourselves so far to thinking about single input, single output systems, which keeps everything

clean. All the intuition scales to multiple inputs and multiple outputs. But that's sort of the only

big addition of complexity when you go to this model from what we've done before.

If you zoom in onto the controller here, you can-- these block diagrams in this language allow

you to abstract away a bunch of hidden things with a single transfer function. If I zoom in, then

you can see things you recognize. It's got a low-pass filter, which is just a system with a pole at

negative 1, exactly what we did in recitation the other day. This is what people-- this is what

MATLAB uses on an F-14. I guess it might not be what the military uses. But it's modeled after

what the unclassified documents say is happening on an F-14.

Everything here, you understand, right? A proportional controller in the end. One difference in

F-14s is that-- and in general for these more complicated systems-- they'll design slightly

different controllers given the situation. So if you have an altimeter on there and pressure

sensors, an inclinometer will tell you the angle of the plane-- given those sensors, they'll pick a

different K for a proportional controller out of a pot of a library of controllers they've already

designed. So it's called gain scheduled control. But the analysis and design of each K is a

linear systems design and analysis.



This is super powerful stuff. I think-- signal processing is good, too, but control is where it's at.

I guess I went a little fast, but that's your introduction to feedback. We'll do DT and CT

feedback in the next couple of lectures. And if anybody hasn't picked up their exams, we have

them over here. And we'll see you in recitation tomorrow.


