6.003 (Fall 2009)

Quiz #2

October 28, 2009

Name:

Kerberos Username:

Please circle your section number:

Section	Instructor	Time
1	Marc Baldo	10 am
2	Marc Baldo	11 am
3	Elfar Adalsteinsson	$1~\mathrm{pm}$
4	Elfar Adalsteinsson	2 pm

Partial credit will be given for answers that demonstrate some but not all of the important conceptual issues.

Explanations are not required and will not affect your grade.

You have **two hours**.

Please put your initials on all subsequent sheets.

Enter your answers in the boxes.

This quiz is closed book, but you may use two 8.5×11 sheets of paper (four sides total).

No calculators, computers, cell phones, music players, or other aids.

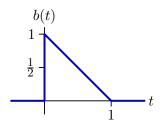
1	/18
2	/16
3	/12
4	/20
5	/16
6	/18
Total	/100

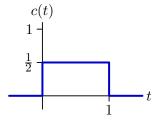
1. Convolutions

[18 points]

Consider the convolution of two of the following signals.

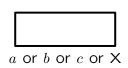




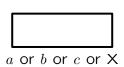


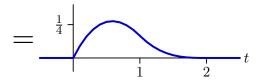
Determine if each of the following signals can be constructed by convolving (a or b or c) with (a or b or c). If it can, indicate which signals should be convolved. If it cannot, put an X in both boxes.

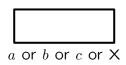
Notice that there are ten possible answers: (a*a), (a*b), (a*c), (b*a), (b*b), (b*c), (c*a), (c*b), (c*c), or (X,X). Notice also that the answer may not be unique.



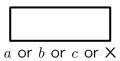
*

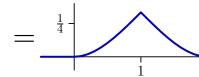


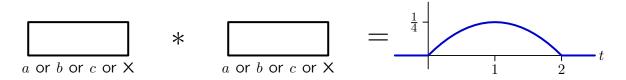


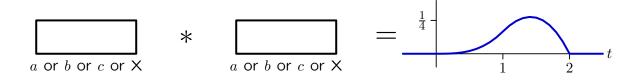


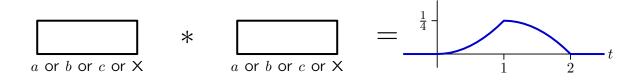
*

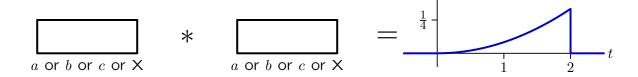












2. Laplace transforms [16 points]

Determine if the Laplace transform of each of the following signals exists. If it does, write **yes** in the box. If it does not, write **no** in the box. If you don't know, write **?** in the box.

Grading: +2 points for each correct answer; -2 points for each incorrect answer; 0 points for each? or blank response.

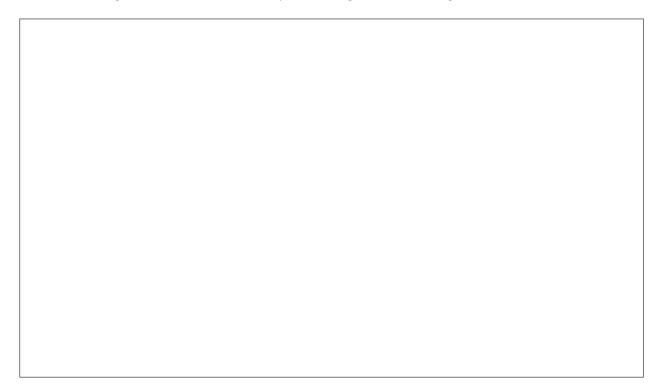
$$x_1(t) = e^{-t}u(t) + e^{-2t}u(t) + e^{-3t}u(t)$$
 $X_1(s)$ exists? (yes or no or ?):
 $x_2(t) = e^{-t}u(-t) + e^{-2t}u(t) + e^{-3t}u(t)$ $X_2(s)$ exists? (yes or no or ?):
 $x_3(t) = e^{-t}u(t) + e^{-2t}u(-t) + e^{-3t}u(t)$ $X_3(s)$ exists? (yes or no or ?):
 $x_4(t) = e^{-t}u(-t) + e^{-2t}u(-t) + e^{-3t}u(t)$ $X_4(s)$ exists? (yes or no or ?):
 $x_5(t) = e^{-t}u(t) + e^{-2t}u(t) + e^{-3t}u(-t)$ $X_5(s)$ exists? (yes or no or ?):
 $x_6(t) = e^{-t}u(-t) + e^{-2t}u(t) + e^{-3t}u(-t)$ $X_6(s)$ exists? (yes or no or ?):
 $x_7(t) = e^{-t}u(t) + e^{-2t}u(-t) + e^{-3t}u(-t)$ $X_7(s)$ exists? (yes or no or ?):
 $x_8(t) = e^{-t}u(-t) + e^{-2t}u(-t) + e^{-3t}u(-t)$ $X_8(s)$ exists? (yes or no or ?):

3. Impulse response [12 points]

Sketch a block diagram for a CT system with impulse response

$$h(t) = (1 - te^{-t}) e^{-2t} u(t)$$
.

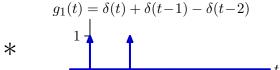
The block diagram should contain only adders, gains, and integrators.

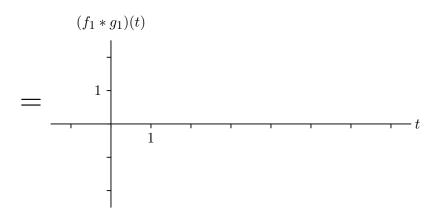


4. Convolutions |20 points|

Sketch the signal that results for each of the following parts.

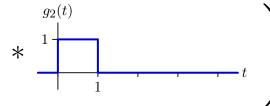
$$f_1(t) = \delta(t) + \delta(t-1) + \delta(t-2)$$



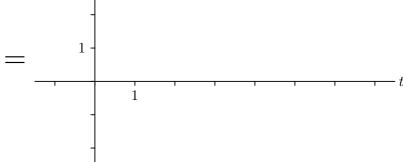


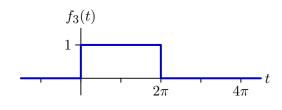
Label the important features of your results!

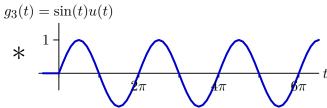
$$\frac{d}{dt}$$

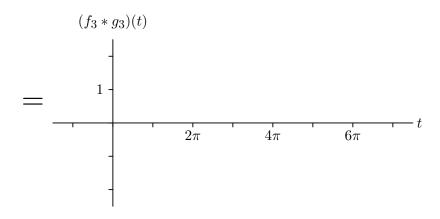


$$\frac{d}{dt} \left(f_2 * g_2 \right) (t)$$









Label the important features of your results!

Given

$$f_4[n] = 2^n u[-n]$$

and

$$g_4[n] = \left(\frac{1}{3}\right)^n u[n]$$

enter the following numbers:

$$(f_4 * g_4)[-2] =$$

$$(f_4 * g_4)[-1] =$$

$$(f_4 * g_4)[0] =$$

$$(f_4 * g_4)[1] =$$

$$(f_4 * g_4)[2] =$$

5. Z transform [16 points]

Let X(z) represent the Z transform of x[n], and let $r_0 < |z| < r_1$ represent its region of convergence (ROC).

Let x[n] be represented as the sum of even and odd parts

$$x[n] = x_e[n] + x_o[n]$$

where $x_e[n] = x_e[-n]$ and $x_o[n] = -x_o[-n]$.

a. Under what conditions does the Z transform of $x_e[n]$ exist?

conditions:

	ditions given in part a, find an expression for the Z transform s region of convergence.	of
Z transform:		
ROC:		

6. DT approximation of a CT system [18 points]

Let H_{C1} represent a **causal** CT system that is described by

$$\dot{y}_C(t) + 3y_C(t) = x_C(t)$$

where $x_C(t)$ represents the input signal and $y_C(t)$ represents the output signal.

$$x_C(t) \longrightarrow H_{C1} \longrightarrow y_C(t)$$

a. Determine the pole(s) of H_{C1} , and enter them in the box below.

l .		
l .		
1		
1		
l .		
l .		
l .		
l .		
l .		
l .		
l .		
l .		
l .		

Your task is to design a **causal** DT system H_{D1} to approximate the behavior of H_{C1} .

$$x_D[n] \longrightarrow H_{D1} \longrightarrow y_D[n]$$

Let $x_D[n] = x_C(nT)$ and $y_D[n] = y_C(nT)$ where T is a constant that represents the time between samples. Then approximate the derivative as

$$\frac{dy_C(t)}{dt} = \frac{y_C(t+T) - y_C(t)}{T}.$$

b. Determine an expression for the pole(s) of H_{D1} , and enter the expression in the box below.

c. Determine the range of values of T for which H_{D1} is stable and enter the range in the box below.

Now consider a second-order causal CT system H_{C2} , which is described by

$$\ddot{y}_C(t) + 100y_C(t) = x_C(t)$$
.

d. Determine the pole(s) of H_{C2} , and enter them in the box below.

Design a **causal** DT system H_{D2} to approximate the behavior of H_{C2} . Approximate derivatives as before:

$$\dot{y_C}(t) = \frac{dy_C(t)}{dt} = \frac{y_C(t+T) - y_C(t)}{T} \quad \text{and} \quad$$

$$\frac{d^2y_C(t)}{dt^2} = \frac{\dot{y_C}(t+T) - \dot{y_C}(t)}{T} .$$

e. Determine an expression for the pole(s) of H_{D2} , and enter the expression in the box below. f. Determine the range of values of T for which H_{D2} stable and enter the range in the box below.

MIT OpenCourseWare http://ocw.mit.edu

6.003 Signals and Systems Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.