Lecture 13: Classification

Announcements

- Reading
 - Chapter 24
 - Section 5.3.2 (list comprehension)
- Course evaluations
 - Online evaluation now through noon on Friday, December 16

Supervised Learning

Regression

- Predict a real number associated with a feature vector
- E.g., use linear regression to fit a curve to data

Classification

 Predict a discrete value (label) associated with a feature vector

An Example (similar to earlier lecture)

		Label				
Name	Egg-laying	Scales	Poisonous	Cold- blooded	Number legs	Reptile
Cobra	1	1	1	1	0	1
Rattlesnake	1	1	1	1	0	1
Boa constrictor	0	1	0	1	0	1
Chicken	1	1	0	1	2	0
Guppy	0	1	0	0	0	0
Dart frog	1	0	1	0	4	0
Zebra	0	0	0	0	4	0
Python	1	1	0	1	0	1
Alligator	1	1	0	1	4	1

Distance Matrix

	cobra	rattlesnake	boa constrictor	chicken	guppy	dart frog	zebra	python	alligator
cobra	-	0.0	1.414	2.236	1.732	1.732	2.236	1.0	1.414
rattlesnake	0.0		1.414	2.236	1.732	1.732	2.236	1.0	1.414
boa constrictor	1.414	1.414	-	2.236	1.0	2.236	1.732	1.0	1.414
chicken	2.236	2.236	2.236		2.449	2.0	2.0	2.0	1.0
guppy	1.732	1.732	1.0	2.449		2.0	1.414	1.414	1.732
dart frog	1.732	1.732	2.236	2.0	2.0		1.414	2.0	1.732
zebra	2.236	2.236	1.732	2.0	1.414	1.414	-	2.0	1.732
python	1.0	1.0	1.0	2.0	1.414	2.0	2.0		1.0
alligator	1.414	1.414	1.414	1.0	1.732	1.732	1.732	1.0	

Code for producing this table posted

Using Distance Matrix for Classification

- Simplest approach is probably nearest neighbor
- Remember training data
- When predicting the label of a new example
 - Find the nearest example in the training data
 - Predict the label associated with that example

Distance Matrix

											-
		cobra	rattlesnake	boa constrictor	chicken	guppy	dart frog	zebra	python	alligator	Label
	cobra	-	0.0	1.414	2.236	1.732	1.732	2.236	1.0	1.414	R
-	rattlesnake	0.0		1.414	2.236	1.732	1.732	2.236	1.0	1.414	R
	boa constrictor	1.414	1.414	-	2.236	1.0	2.236	1.732	1.0	1.414	R
	chicken	2.236	2.236	2.236		2.449	2.0	2.0	2.0	1.0	~R
	guppy	1.732	1.732	1.0	2.449		2.0	1.414	1.414	1.732	~R
	dart frog	1.732	1.732	2.236	2.0	2.0	-	1.414	2.0	1.732	~R
	zebra	2.236	2.236	1.732	2.0	1.414	1.414				1
	python	1.0	1.0	1.0	2.0	1.414	2.0	•			
	alligator	1.414	1.414	1.414	1.0	1.732	1.732	*			

An Example

/ \ \ \ / 1 / 1 / 7 1) / / / |

K-nearest Neighbors

An Example

/ \ \ \ / 1 | / 1 | / 1 | / / | 333333**33333**33

Advantages and Disadvantages of KNN

Advantages

- Learning fast, no explicit training
- No theory required
- Easy to explain method and results

Disadvantages

- Memory intensive and predictions can take a long time
 - Are better algorithms than brute force
- No model to shed light on process that generated data

The Titanic Disaster

•RMS Titanic sank in the North Atlantic the morning of 15 April 1912, after colliding with an iceberg. Of the 1,300 passengers aboard, 812 died. (703 of 918 crew members died.)

- Database of 1046 passengers
 - Cabin class
 - 1st, 2nd, 3rd
 - Age
 - Gender

Is Accuracy Enough

- If we predict "died", accuracy will be >62% or passenger and >76% for crew members
- Consider a disease that occurs in 0.1% of population
 Predicting disease-free has an accuracy of 0.999

Other Metrics

true positive sensitivity =true positive + false negative true negative $specificity = \frac{1}{true \ negative + false \ positive}$ true positive positive predictive value = ----true positive + false positive true negative $negative\ predictive\ value = rac{1}{true\ negative\ +\ false\ negative}$ sensitivity = recall specificity = precision

Testing Methodology Matters

Leave-one-out

Repeated random subsampling

Leave-one-out

def leaveOneOut(examples, method, toPrint = True): truePos, falsePos, trueNeg, falseNeg = 0, 0, 0, 0 for i in range(len(examples)): testCase = examples[i] trainingData = examples[0:i] + examples[i+1:] results = method(trainingData, [testCase]) truePos += results[0] falsePos += results[1] trueNeg += results[2] falseNeg += results[3] if toPrint:

getStats(truePos, falsePos, trueNeg, falseNeg)
return truePos, falsePos, trueNeg, falseNeg

Repeated Random Subsampling

Repeated Random Subsampling

```
def randomSplits(examples, method, numSplits, toPrint = True):
    truePos, falsePos, trueNeg, falseNeg = 0, 0, 0, 0
    random.seed(0)
    for t in range(numSplits):
        trainingSet, testSet = split80 20(examples)
        results = method(trainingSet, testSet)
        truePos += results[0]
        falsePos += results[1]
        trueNeg += results[2]
        falseNeg += results[3]
    getStats(truePos/numSplits, falsePos/numSplits,
             trueNeg/numSplits, falseNeg/numSplits, toPrint)
    return truePos/numSplits, falsePos/numSplits,\
             trueNeg/numSplits, falseNeg/numSplits
```

Let's Try KNN

def KNearestClassify(training, testSet, label, k):
 """Assumes training & testSet lists of examples, k an int
 Predicts whether each example in testSet has label
 Returns number of true positives, false positives,
 true negatives, and false negatives"""

```
print('Average of LOO testing using KNN (k=3)')
truePos, falsePos, trueNeg, falseNeg =\
    leaveOneOut(examples, knn)
```

Results

Average of 10 80/20 splits using KNN (k=3) Accuracy = 0.766Sensitivity = 0.67Specificity = 0.836 Pos. Pred. Val. = 0.747 Average of LOO testing using KNN (k=3) Accuracy = 0.769Sensitivity = 0.663 Specificity = 0.842Pos. Pred. Val. = 0.743

Considerably better than 62%

Not much difference between experiments

Logistic Regression

Analogous to linear regression

- Designed explicitly for predicting probability of an event
 - Dependent variable can only take on a finite set of values
 - Usually 0 or 1
- Finds weights for each feature
 - Positive implies variable positively correlated with outcome
 - Negative implies variable negatively correlated with outcome
 - Absolute magnitude related to strength of the correlation
- Optimization problem a bit complex, key is use of a log function—won't make you look at it

Class LogisticRegression

import sklearn.linear_model

fit(sequence of feature vectors, sequence of labels)
 Returns object of type LogisticRegression
 coef

Returns weights of features predict_proba(feature vector) Returns probabilities of labels

Building a Model

```
def buildModel(examples, toPrint = True):
    featureVecs, labels = [],[]
    for e in examples:
        featureVecs.append(e.getFeatures())
        labels.append(e.getLabel())
    LogisticRegression = sklearn.linear_model.LogisticRegression
    model = LogisticRegression().fit(featureVecs, labels)
    if toPrint:
        ...|
    return model
```

Applying Model

```
def applyModel(model, testSet, label, prob = 0.5):
  testFeatureVecs = [e.getFeatures() for e in testSet]
    probs = model.predict proba(testFeatureVecs)
    truePos, falsePos, trueNeg, falseNeg = 0, 0, 0, 0
    for i in range(len(probs)):
        if probs[i][1] > prob:
            if testSet[i].getLabel() == label:
                truePos += 1
            else:
                falsePos += 1
        else:
            if testSet[i].getLabel() != label:
                trueNeg += 1
            else:
                falseNeg += 1
    return truePos, falsePos, trueNeg, falseNeg
```

List Comprehension

expr for id in L

Creates a list by evaluating expr len(L) times with id in expr replaced by each element of L

```
L = [x*x for x in range(10)]
print(L)
L = [x*x for x in range(10) if x%2 == 0]
print(L)
```

Applying Model

```
def applyModel(model, testSet, label, prob = 0.5):
    testFeatureVecs = [e.getFeatures() for e in testSet]
    probs = model.predict_proba(testFeatureVecs)
    truePos, falsePos, trueNeg, falseNeg = 0, 0, 0, 0
    for i in range(len(probs)):
        if probs[i][1] > prob:
            if testSet[i].getLabel() == label:
                truePos += 1
            else:
                falsePos += 1
        else:
            if testSet[i].getLabel() != label:
                trueNeq += 1
            else:
                falseNeg += 1
    return truePos, falsePos, trueNeg, falseNeg
```

Putting It Together

```
def lr(trainingData, testData, prob = 0.5):
   model = buildModel(trainingData, False)
   results = applyModel(model, testData, 'Survived', prob)
   return results
```

```
print('Average of LOO testing using LR')
truePos, falsePos, trueNeg, falseNeg =\
    leaveOneOut(examples, lr)
```

Results

Average of 10 80/20 splits LR Accuracy = 0.804 Sensitivity = 0.719 Specificity = 0.859 Pos. Pred. Val. = 0.767

Average of LOO testing using LR Accuracy = 0.786 Sensitivity = 0.705 Specificity = 0.842 Pos. Pred. Val. = 0.754

Compare to KNN Results

Average of 10 80/20 splits using KNN (k=3) Accuracy = 0.744 Sensitivity = 0.629 Specificity = 0.829 Pos. Pred. Val. = 0.728 Average of LOO testing using KNN (k=3) Accuracy = 0.769 Sensitivity = 0.663 Specificity = 0.842 Pos. Pred. Val. = 0.743 Average of 10 80/20 splits LR Accuracy = 0.804 Sensitivity = 0.719 Specificity = 0.859 Pos. Pred. Val. = 0.767 Average of LOO testing using LR Accuracy = 0.786 Sensitivity = 0.705 Specificity = 0.842 Pos. Pred. Val. = 0.754

Performance not much difference Logistic regression slightly better

Also provides insight about variables

Looking at Feature Weights

```
def buildModel(examples, toPrint = True):
    if toPrint:
        print('model.classes_ =', model.classes_)
        for i in range(len(model.coef_)):
            print('For label', model.classes_[1])
            for j in range(len(model.coef_[0])):
                print(' ', Passenger.featureNames[j],
                      model.coef_[0][j])
    return model
                              model.classes = ['Died' 'Survived']
buildModel(examples, True)
                              For label Survived
                                C1 = 1.66761946545
  Be wary of reading too
                                C2 = 0.460354552452
  much into the weights
                                C3 = -0.50338282535
  Features are often
                                age = -0.0314481062387
  correlated
                                male gender = -2.39514860929
```

Changing the Cutoff

```
Try p = 0.1Try p = 0.9Accuracy = 0.493Accuracy = 0.656Sensitivity = 0.976Sensitivity = 0.176Specificity = 0.161Specificity = 0.984Pos. Pred. Val. = 0.444Pos. Pred. Val. = 0.882
```

ROC (Receiver Operating Characteristic)

```
def buildROC(trainingSet, testSet, title, plot = True):
    model = buildModel(trainingSet, True)
    xVals, yVals = [], []
    p = 0.0
    while p <= 1.0:
        truePos, falsePos, trueNeg, falseNeg =\
                               applyModel(model, testSet,
                                'Survived', p)
        xVals.append(1.0 - specificity(trueNeg, falsePos))
        yVals.append(sensitivity(truePos, falseNeg))
        p += 0.01
    auroc = sklearn.metrics.auc(xVals, yVals, True)
    if plot:
    return auroc
```

Output

MIT OpenCourseWare https://ocw.mit.edu

6.0002 Introduction to Computational Thinking and Data Science Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.