
Lecture 13:  
Classification  
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Announcements  

Reading 
◦ Chapter 24 
◦ Section 5.3.2 (list comprehension) 

Course evaluations 
◦ Online evaluation now through noon on Friday, 

December 16 

6.0002 LECTURE 13 2 



    
 

    

Supervised Learning  

Regression 
◦ Predict a real number associated with a feature vector  
◦ E.g., use linear regression to fit a curve to data 

Classification 
◦ Predict a discrete value (label) associated with a feature 

vector 
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An Example (similar to earlier lecture) 
Features Label 

Name Egg-laying Scales Poisonous Cold-
blooded 

Number 
legs 

Reptile 

Cobra 1 1 1 1 0 1 

Rattlesnake 1 1 1 1 0 1 

Boa 0 1 0 1 0 1 
constrictor 

Chicken 1 1 0 1 2 0 

Guppy 0 1 0 0 0 0 

Dart frog 1 0 1 0 4 0 

Zebra 0 0 0 0 4 0 

Python 1 1 0 1 0 1 

Alligator 1 1 0 1 4 1 
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Distance Matrix  

Code for producing this table posted  
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Using Distance Matrix for Classification  

Simplest approach is probably nearest neighbor  
Remember training data 

When predicting the label of a new example 
◦ Find the nearest example in the training data 
◦ Predict the label associated with that example 

X 

6.0002 LECTURE 13 6 



Distance Matrix  

Label  

R  

R  
R  

~R  

~R  

~R  
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An Example  
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K-nearest Neighbors  

X 
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An Example  
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 Advantages and Disadvantages of KNN  

Advantages 
◦ Learning fast, no explicit training 
◦ No theory required 
◦ Easy to explain method and results 

Disadvantages 
◦ Memory intensive and predictions can take a long time  
◦ Are better algorithms than brute force 
◦ No model to shed light on process that generated data  
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 The Titanic Disaster  

RMS Titanic sank in the North Atlantic the morning of
15 April 1912, after colliding with an iceberg. Of the 
1,300 passengers aboard, 812 died. (703 of 918 crew
members died.) 

Database of 1046 passengers 
◦ Cabin class 
◦ 1st, 2nd, 3rd 

◦ Age 
◦ Gender 
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 Is Accuracy Enough  

If we predict “died”, accuracy will be >62% or
passenger and >76% for crew members 

Consider a disease that occurs in 0.1% of population  
◦ Predicting disease-free has an accuracy of 0.999 
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Other Metrics  

sensitivity = recall 
specificity = precision 
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Testing Methodology Matters  

Leave-one-out 

Repeated random subsampling 
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Leave-one-out  
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Repeated Random Subsampling  

6.0002 LECTURE 13  17 



Repeated Random Subsampling  
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Let’s Try KNN  
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Results  
Average of 10 80/20 splits using KNN (k=3) 
Accuracy = 0.766 
Sensitivity = 0.67 
Specificity = 0.836 
Pos. Pred. Val. = 0.747 
Average of LOO testing using KNN (k=3) 
Accuracy = 0.769 
Sensitivity = 0.663 
Specificity = 0.842 
Pos. Pred. Val. = 0.743 

Considerably better than 62% 

Not much difference between experiments 
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Logistic Regression 
Analogous to linear regression 

Designed explicitly for predicting probability of an event 
◦ Dependent variable can only take on a finite set of values  
◦ Usually 0 or 1 

Finds weights for each feature 
◦ Positive implies variable positively correlated with  

outcome  
◦ Negative implies variable negatively correlated with  

outcome  
◦ Absolute magnitude related to strength of the correlation  

Optimization problem a bit complex, key is use of a log
function—won’t make you look at it 
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Class LogisticRegression  

fit(sequence of feature vectors, sequence of labels) 
Returns object of type LogisticRegression 

coef_ 
Returns weights of features 

predict_proba(feature vector) 
Returns probabilities of labels 
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 Building a Model  
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Applying Model  

6.0002 LECTURE 13  24 



   
  

List Comprehension  

expr for id in L 

Creates a list by evaluating expr len(L) times with 
id in expr replaced by each element of L 
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Applying Model  
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 Putting It Together  
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Results  

Average of 10 80/20 splits LR 
Accuracy = 0.804 
Sensitivity = 0.719 
Specificity = 0.859 
Pos. Pred. Val. = 0.767 

Average of LOO testing using LR 
Accuracy = 0.786 
Sensitivity = 0.705 
Specificity = 0.842 
Pos. Pred. Val. = 0.754 
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Compare to KNN Results  

Average of 10 80/20 splits using KNN (k=3) 
Accuracy = 0.744 
Sensitivity = 0.629 
Specificity = 0.829 
Pos. Pred. Val. = 0.728 

Average of LOO testing using KNN (k=3) 
Accuracy = 0.769 
Sensitivity = 0.663 
Specificity = 0.842 
Pos. Pred. Val. = 0.743 

Average of 10 80/20 splits LR 
Accuracy = 0.804 
Sensitivity = 0.719 
Specificity = 0.859 
Pos. Pred. Val. = 0.767 

Average of LOO testing using LR 
Accuracy = 0.786 
Sensitivity = 0.705 
Specificity = 0.842 
Pos. Pred. Val. = 0.754 

Performance not much difference  
Logistic regression slightly better  

Also provides insight about variables  
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Looking at Feature Weights  

Be wary of reading too  
much into the weights 
Features are often 
correlated 

model.classes_ = ['Died' 'Survived']  
For label Survived 

C1 = 1.66761946545 
C2 = 0.460354552452 
C3 = -0.50338282535 
age = -0.0314481062387 
male gender = -2.39514860929  
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Changing the Cutoff  

Try p = 0.1 Try p = 0.9 
Accuracy = 0.493 Accuracy = 0.656 
Sensitivity = 0.976 Sensitivity = 0.176 
Specificity = 0.161 Specificity = 0.984 
Pos. Pred. Val. = 0.444 Pos. Pred. Val. = 0.882 
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 ROC (Receiver Operating Characteristic)  
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Output  
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