

D-Lab Spring 2010 Development through Dialogue, Design and Dissemination

Today's Class

Logistics

- Design Box Presentations
- Design, Innovation, Invention and the Design Process
- Discussion
 - Readings
- Case Studies

Some Logistics

- Turning in Homework
- Course website
- Textbooks

Technology Boxes

- Which one is your favorite?
- Which one exempifies the trade-offs that were made
- 2 minutes or less!

Design, Innovation and Invention

invent: to be the first to think of, make, or use somethingdesign: to work out or create the form or structure of something

Source: Encarta® World English Dictionary © 1999 Microsoft Corporation. All rights reserved. Developed for Microsoft by Bloomsbury Publishing Plc. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

nnovation

Clear plastic bottles poking through roof capture sunlight to illuminate windowless rooms <u>http://www.youtube.com/watch?v=C</u> <u>S3764DmIP4</u>

Harder problems lead to better inventions

Shawn Frayne

Challenges in Design

- Tradeoffs
- Dynamics and long-term effects of use
- Details
- Time Pressures
- Economics
- Use and mis-use
- Ethics

- Information Gathering
- Problem Definition
- Design Specifications
- Idea Generation
- Analysis & Experimentation
- Concept Evaluation
- Detail Design
- Fabrication
- Testing & Evaluation

The Creativity Caveat

• Don't let the process detract from the product

The Changing Approach

Information Gathering

- Problem Definition
- Design Specifications
- Idea Generation
- Analysis & Experimentation
- Concept Evaluation
- Detail Design
- Fabrication
- Testing & Evaluation

- Information Gathering
- Problem Definition
- Design Specifications
- Idea Generation
- Analysis & Experimentation
- Concept Evaluation
- Detail Design
- Fabrication
- Testing & Evaluation

- Information Gathering
- Problem Definition
- Design Specifications
- Idea Generation
- Analysis & Experimentation
- Concept Evaluation
- Detail Design
- Fabrication
- Testing & Evaluation

Design Specifications

- Translate customer needs into quantitative design performance targets
- Define internal basis for measuring success
- Capture the necessary characteristics for a successful product
- Provide a basis for resolving trade-offs

Translating Customer Needs

Need	Design Attribute	Units	Owner
Easy assembly	Assembly time	seconds	Floyd
Safe	Structural safety factor		Lisa
Safe	Fatigue life	cycles	Nathan
Magical	Works like magic	subjective	Meta

- Information Gathering
- Problem Definition
- Design Specifications
- Idea Generation
- Analysis & Experimentation
- Concept Evaluation
- Detail Design
- Fabrication
- Testing & Evaluation

Brainstorming Method

- generate lots of ideas
- explore all classes of solutions
- develop new perspectives
- generate usable information

Brainstorming Rules

- Defer judgment
- Build upon the ideas of others
- One conversation at a time
- Stay focused on the topic
- Encourage wild ideas

- Information Gathering
- Problem Definition
- Design Specifications
- Idea Generation
- Analysis & Experimentation
- Concept Evaluation
- Detail Design
- Fabrication
- Testing & Evaluation

- Information Gathering
- Problem Definition
- Design Specifications
- Idea Generation
- Analysis & Experimentation
- Concept Evaluation
- Detail Design
- Fabrication
- Testing & Evaluation

Pugh Chart

- Information Gathering
- Problem Definition
- Design Specifications
- Idea Generation
- Analysis & Experimentation
- Concept Evaluation
- Detail Design
- Fabrication
- Testing & Evaluation

- Information Gathering
- Problem Definition
- Design Specifications
- Idea Generation
- Analysis & Experimentation
- Concept Evaluation
- Detail Design
- Fabrication
- Testing & Evaluation

- Information Gathering
- Problem Definition
- Design Specifications
- Idea Generation
- Analysis & Experimentation
- Concept Evaluation
- Detail Design
- Fabrication
- Testing & Evaluation

Choose the best idea

Design for Developing Countries

"Brute force engineering options often meet the criteria but somewhere there is a profound solution, which is simple, cheap, and beautiful. Hold out for this as long as possible."

-Kurt Kornbluth former D-Lab Instructor

Battery-operated field incubator \$1250

Thermo-electric field incubator \$500

Commercial incubator photos (left and center) © source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. Phase change incubator \$100

The Phase Change Incubator

Guiding Principles for DfDC

- Identify functional requirements
- Encourage participatory development
- Value indigenous knowledge
- Promote local innovation
- Strive for sustainability

Technology Case Studies

- Project Selection (Mar 1)
 - Design challenge descriptions due for review by Wednesday, Feb 17
 - Slides due by noon on Wednesday, Feb 24
- Readings on course website
- Homework 1 (due Feb 10)
- Homework 3 (due Feb 10)

MIT OpenCourseWare http://ocw.mit.edu

EC.720J / 2.722J D-Lab II: Design Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.