14.54 Fall 2016 Recitation: HO Model

Consider an economy (Home) with 2 goods, Cloth (C) and Food (F). All consumers have same Cobb-Douglas utility function:

$$
\begin{equation*}
U\left(D_{C}, D_{F}\right)=\left(D_{C}\right)^{1-\alpha}\left(D_{F}\right)^{\alpha} \tag{1}
\end{equation*}
$$

with $\alpha \in(0,1)$. The production technologies are:

$$
\begin{align*}
& F_{F}\left(K_{F}, L_{F}\right)=\left(K_{F}\right)^{\beta_{F}}\left(L_{F}\right)^{1-\beta_{F}} \tag{2}\\
& F_{C}\left(K_{C}, L_{C}\right)=\left(K_{C}\right)^{\beta_{C}}\left(L_{C}\right)^{1-\beta_{C}} \tag{3}
\end{align*}
$$

with $\beta_{F}, \beta_{C} \in(0,1)$ and $\beta_{F}>\beta_{C}$.

1. The objective of this first exercise is to demonstrate the Stolper-Samuelson Theorem when Equations (2)-(3) hold.
(a) Let $a_{K i}$ and $a_{L i}$ denote the amount of capital and labor used in one unit of good $i=C, F$. Show that:

$$
\begin{equation*}
\frac{a_{K i}}{a_{L i}}=\frac{\beta_{i}}{\left(1-\beta_{i}\right)} \frac{w}{r} \tag{4}
\end{equation*}
$$

(b) Using Equation (4), show that:

$$
\begin{aligned}
a_{L i} & =\left[\frac{\beta_{i}}{\left(1-\beta_{i}\right)} \cdot \frac{w}{r}\right]^{-\beta_{i}} \\
a_{K i} & =\left[\frac{\beta_{i}}{\left(1-\beta_{i}\right)} \cdot \frac{w}{r}\right]^{-\beta_{i}+1}
\end{aligned}
$$

(c) Let p_{i} denote the price of good $i=C, F$. Show that:

$$
\begin{equation*}
p_{i}=\beta_{i}^{-\beta_{i}}\left(1-\beta_{i}\right)^{\beta_{i}-1} r^{\beta_{i}} w^{1-\beta_{i}} \tag{5}
\end{equation*}
$$

(d) Show that an decrease in $p=p_{C} / p_{F}$ increases the real return of capital and decreases the real return of labor [Stolper-Samuelson Theorem].
2. The objective of this second exercise is to demonstrate the Rybczynski Theorem when Equations (2)-(3) hold.
(a) Let Q_{C} and Q_{F} denote the output of good C and F. Show that

$$
\begin{align*}
Q_{C} & =\frac{L-\frac{a_{L F}}{a_{K F}} K}{a_{K C}\left(\frac{a_{L C}}{a_{K C}}-\frac{a_{L F}}{a_{K F}}\right)} \tag{6}\\
Q_{F} & =\frac{\frac{a_{L C}}{a_{K C}} K-L}{a_{K F}\left(\frac{a_{L C}}{a_{K C}}-\frac{a_{L F}}{a_{K F}}\right)} \tag{7}
\end{align*}
$$

(b) Using Equation (4), show that an increase in K raises Q_{F} and lowers Q_{C} [Rybczynski Theorem].
3. The objective of this last exercise is to demonstrate the Heckscher-Ohlin Theorem when Equations (1)-(3).
(a) Using Equation (1), show that

$$
\frac{p_{C} Q_{C}}{p_{F} Q_{F}}=\frac{1-\alpha}{\alpha}
$$

(b) Using Equation (5), show that

$$
\begin{equation*}
\frac{\beta_{F}^{\beta_{F}}\left(1-\beta_{F}\right)^{1-\beta_{F}}}{\beta_{C}^{\beta_{C}}\left(1-\beta_{C}\right)^{1-\beta_{C}}}\left(\frac{w}{r}\right)^{\beta_{F}-\beta_{c}} \frac{Q_{C}}{Q_{F}}=\frac{1-\alpha}{\alpha} \tag{8}
\end{equation*}
$$

(c) Using Equations (6), (7), and (8), show that labor-abundant countries tend to produce disproportionate amount of Cloth [Heckscher-Ohlin Theorem].

MIT OpenCourseWare
https://ocw.mit.edu

14.54 International Trade

Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

