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Outline 

Outline 

Spectral clustering 
Graph Laplacian 
Eigenvector for clustering 

Modularity maximization 
Deciding number of clusters 
Spectral clustering with a variation 

References: 
Newman, Chapter 6 (6.13) 
Newman, Chapter 11 (11.5, 11.8) 
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Clustering 

Example 1: Polarization in Content Networks 

$PVSUFTZ�PG�-BEB�"EBNJD�BOE�/BUBMJF�(MBODF���6TFE�XJUI�QFSNJTTJPO� 

'JHVSF���JO�"EBNJD�-BEB�BOE�/BUBMJF�(MBODF���5IF�1PMJUJDBM�#MPHPTQIFSF�BOE�UIF������6�4��&MFDUJPO��%JWJEFE�5IFZ�#MPH���*O�*OUFSOBUJPOBM�$POGFSFODF�PO�,OPXMFEHF�%JTDPWFSZ�BOE�%BUB� 
.JOJOH�1SPDFFEJOHT�PG�UIF��SE�*OUFSOBUJPOBM�8PSLTIPQ�PO�-JOL�%JTDPWFSZ�$IJDBHP�*MMJOPJT�������/FX�:PSL�/:��"TTPDJBUJPO�GPS�$PNQVUJOH�.BDIJOFSZ�	"$.
 ������QQ��������� 
*4#/��������������������*4#/���������������� 

Figure: The network structure of political blogs prior to the 2004 U.S. Presidential 
election reveals two natural and well-separated clusters (Adamic and Glance, 2005) 
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Networks: Lecture 9 Clustering 

Example 2: Groups in Social Networks 

Figure: The social network of friendships within a 34-person karate club provides 
clues to the fault lines that eventually split the club apart (Zachary, 1977) 
"EBQUFE�GSPN�'JHVSF���	Q�����
�JO�;BDIBSZ�8BZOF�8���"O�*OGPSNBUJPO�'MPX�.PEFM�GPS�$POGMJDU�BOE�'JTTJPO�JO�4NBMM�(SPVQT���+PVSOBM�PG�"OUISPQPMPHJDBM�3FTFBSDI����OP�� 
�� ����
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Clustering 

Clustering 

What is clustering (in the context of network)? 

Dividing nodes into disjoint groups (clusters) 
In a “sensible” manner 

What is “sensible”? 

There is no one definition. Context dependent. 
The reason why there are many di↵erent algorithms. 
In our examples, the outcome seems“sensible” 

Evaluating clustering algorithm 

For dataset where ground truth (clustering) is known 
Can evaluate outcome of algorithm using various score (e.g. F1-score) 
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Clustering 

Clustering 

Why clustering? 

Useful tool for exploratory analysis of network data, to begin with 

Captures (hidden) social structure in social network, e.g. 

people with similar “opinions” 
people who are “friends” 
people with similar “preferences” or “tastes” 
! recommendation system 

More generally, identifies “heterogenous” components in network 

Di↵erent modes of population preferences 
In a probabilistic model 

it captures “mixture” component of the distribution 
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Spectral clustering 

Graph partition 

We shall start with simplest clustering problem: Graph partition 

Given (undirected) graph G over n nodes N and edges E 
And given numbers 1  n1, n2 < n such that n1 + n2 = n
Partition N into two disjoint sets of sizes n1 and n2
So as to minimize number of edges between partitions 

Formally: 

for each node i 2 N, assign si 2 {–1, 1}
the objective that needs to be minimized is 

C (s) =  Â Aij

where A = [Aij ] is the adjacency matrix; s = (si ) 
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Spectral clustering 

Graph partition 

A trick:  for any  s i , sj 2 {–1, 1}:
(

1 1 if  si 6= sj
2  
(1 – si sj ) =

0 if  si = sj . 

Therefore 

C (s) =  Â Aij
i :si =+1 
j :sj = –1 

= 
1 Â(1 – si sj )Aij
2 i ,j
⇣ ⌘

1 
= 

2 Â Aij — Â si Aij sj .

i ,j i ,j 
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Spectral clustering 

Graph partition 

Observe 

ÂAij = Â(ÂAij ) = Â ki
i ,j i j i 

Â(ÂDij ) = Â 
i j, 

Dij= 
i j 

Â si Dij sj = sT Ds,= 

⇣
C (s) =

1 1 
sT (D — A)s.

2 2 
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where D = diag(ki ) is diagonal matrix; si
2 = 1 for all s 2 {�1, 1}n.

sTDs� sTAs
⌘

=
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Spectral clustering 

Graph Laplacian 

Graph Laplacian matrix L = D A. That  is,

C (s) =
1 
sT Ls.

2 

Another view of C (s): 

C (s) =  Â Aij
i :si =+1 
j :sj = 1 

1 
= 

4 Â(si — sj )
2Aij .

i ,j 

More generally, for any s 2 Rn

sT Ls = 
1

2 Â(si — sj )
2Aij    ≥ 0. 

ij 
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Spectral clustering 

Graph Laplacian 

Revised (relaxed) goal: 

so

maxi

 that

mi

 
ze s

s

T

2

 

 
Ls
=

 fo
n 
r a
and

ny

 
 s 2

s
 R
=

n

Âi i Âi i n1 — n2

Lagrangian associated with this optimization 

g (s, l, µ) = sT Ls + l(n — sT s) +  µ(n1 — n2 — 1T s) 

Taking partial derivative 

∂g 
= 2 Â Lij sj — 2lsi — µ

∂si j 
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Spectral clustering 

Graph Laplacian 

Setting partial derivate to 0 for optimal assignment 

Ls = ls +
µ 
2 
1 

Since 1T L = 0 and 1T s = n1 — n2, we have

0 = 1T Ls = l1T s +
µ

2 
1T 1 

That is 

Therefore, optimal value s should satisfy 
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µ

2
= �l

n1 � n2
n

Ls = l
⇣
s� n1 � n2

n
1
⌘
.
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Spectral clustering 

Graph Laplacian 

1. Then

Lx = Ls 
n1 —

n 
n2 L1 

= Ls 
⇣ 

= l s 

since L1 = 0 
⌘ n1 n2 1 

n 
= lx 

And 

T LsxT Lx = s
n1

2 
n 
n2 TL1 +s

n1 

n 
n2 )21T L1 = sT Ls. 
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Spectral clustering 

Graph Laplacian 

Now 

xT Lx = lxT x 

And 

Tx x = 
⇣ 
s 

n1
⌘T ⇣n2 1 s 

n1
⌘ n2 1 

n n 

T= s s + 
(n1 n2)2 

1T 1
2n

n1
2 

n 
n2 T 1s

(n1 n2)2= n + 2(n1 n2)n⇣ ⌘ 
= 

1 
n 2 + (n1 n2)

2 
2n(n1 n2)n 
2 
2= 

1 
(n n1 + n2)

2 = 
4n 

. 
n n 
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Spectral clustering 

Graph Laplacian 

In summary, find eigenvector x of L such that 
2

So that kxk2 = 4n
2

/n, and
2 

Lx = lx with minimal possible l 

Observe that l 0 since xT Lx 0 for  all  x 2 Rn

Now, 1 is an eigenvector of L with eigenvalue 0 

1T L1 = Â Lij = Â Dij Â Aij
ij ij ij 

= Â ki Â Aij = 2m 2m = 0
i ij 

where m is the number of edges 
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Spectral clustering 

Graph Laplacian 

Thus, the smallest eigenvalue is 0 with eigenvector 1 

It gives no partition 

Therefore, we need to look for the second smallest eigenvector 

Let v 2 Rn 
be the eigenvector of L

corresponding to the second smallest eigenvalue 

Final step: find s 2 { 1, 1}n

That is most aligned with v 
So that |{i : si = +1}| = n1, |{i : si = 1}| = n2
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Spectral clustering 

Spectral clustering 

Alignment of s and v: Âi si vi

To maximize alignment 

Order [n] as per the decreasing order of values of v 
For top n1 indices, assign corresponding si = +1 and rest 1 

Minor subtlety: 

Both v and v are eigenvectors 
Therefore, repeat the above with respect to v 
Choose the partition that minimizes our objective 
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Modularity maximization 

Modularity maximization 

Spectral clustering (or partition) 

Uses informative eigenvector of Graph Laplacian 
Requires number of nodes in the partition 

Modularity maximization 

Provides a natural way to determine partitions, their sizes 
A variation on spectral partitioning 

So what is Modularity? 

Let ci denote cluster index of node i ; c = (ci ) 
Then modularity of clustering c, denoted as Q(c) is 

1 ⇣ ki kj 
⌘

Q(c) = Â Aij
2m i2N 2m 

j2N :ci =cj

18 
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Modularity maximization 

Modularity 

Modularity of clustering c 

1 ⇣ ki kj 
⌘

Q(c) = Â Aij
2m i 2N 2m 

j2N :ci =cj

ki kj /2m captures the probability that edge between i , j exists 
under “random graph formation” 

that is, modularity tries to capture deviation from it 

Modularity maximization 

find clustering c so that Q(c) is maximized 
find maximal deviation from “random graph” 
we will restrict to c 2 { 1, 1}n
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Modularity maximization 

Modularity for c 2 { 1, 1}n

1 ⇣ ki kj 
⌘

Q(c) = Â Aij
2m i 2N 2m 

j2N :ci =cj

1 ⇣ ki kj 
⌘

= Â Aij (1 + ci cj )/2
2m 2mij 

1 
= 

4m Â Bij (1 + ci cj )
ij 

ki kj 1
where Bij , or  B = A kkT 

with k = (ki )= Aij 2m 2m 

Therefore 

4mQ(c) = Â Bij + Â ci Bij cj = 1T B1 + cT Bc.
ij ij 
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Modularity maximization 

Modularity maximization 

Now 

1T B1 = 1T A1 
1 
2m 

1T kkT 1 

= 2m 
1 
2m 

2m ⇥ 2m = 0,

Therefore 

4mQ(c) = cT Bc 

Therefore, modularity maximization can be relaxed 

maximize cT Bc such that cT c = n 
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Modularity maximization 

Modularity maximization 

Consider Lagrangian formulation 
T g (l, c) = cT Bc + l(n c c). 

Taking partial derivative of g with respect to ci
∂g 

= 2 Â Bij cj 2lci∂ci j 

Setting above to 0 for all i yields 

Bc = lc 

The corresponding modularity is 

Q(c) =
1 

lcT c = l 
n 

.
4m 2m 
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Modularity maximization 

Modularity maximization 

In summary 

Find largest eigenvector, v, of B to maximize modularity 
Use v to find partition c 

Final step 

Find c 2 { 1, 1}n 
that maximizes alignment with v

That is, Âi ci vi is maximum 
This has a simple answer 

(
1  if  vi 0

ci = 
1  if  vi < 0. 
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Generalizations 

Generalizations 

We have discussed clustering with two clusters 

It can be applied repeatedly to obtain multiple / hierarchical clusters 
Or, Modularity optimization can be defined for more than two clusters 

But solving it can be computationally hard 

A generic Spectral approach 

Let W = [Wij ] be matrix (usually symmetric) of interest 
Find top k eigenvectors v1, . . . , vk of W 

”top” = smallest or largest eigenvalues/vectors depending on context 

Assign ([v1]i , . . . , [vk ]i ) 2 Rk 
to node i 2 N

embedding of each node i in k dimensional space 

Use this embedding to do further processing 
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