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Markov Chain Monte Carlo 

Markov Chain Monte Carlo
 

�	 Monte Carlo sampling made for large scale problems via Markov 
Chains 

�	 Monte Carlo Sampling 

�	 Rejection Sampling 

�	 Importance Sampling 

�	 Metropolis Hastings 

�	 Gibbs 
�	 Useful for MAP and MLE problems 
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Markov Chain Monte Carlo 

MONTE CARLO
 

Example:   
21 −x /2 −(x−2)2/2P(x) ∼ 0.5√ e + e

2π 
Calculate (x2 + cosh(x))P(x)dx May be difficult!

 Ss1∼f (x)P(x)dx = f (xs) xs ∼ P(x)
S" 1  s=1" 1  

When this becomes
 
intractable
 Monte−Carlo 

Sampling may 
still be feasible 
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Markov Chain Monte Carlo 

Properties of Estimator
 

S1 s 
Îs = f (xs), xs ∼ P(x)

S 
s=1 

I = f (x)P(x)dx 

ˆlim Is = I ← unbiased 
S→∞ 

σ 
σÎ = √ 

S 

From Introduction Class. 
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Markov Chain Monte Carlo 

What’s good about this?
 

The good 

* Quick and “dirty” estimate (sometimes, it’s the only way out) 
* Sampling is useful per se 

What’s not good? 

* Quick and Dirty! 
* Rao-Blackwell 

⇒ Sample based estimator generally worse 
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Markov Chain Monte Carlo 

Methods 

Basics 
Via CDF (random and stratified) 

Intermediate 
Importance Sampling 
Rejection Sampling 

Objective 

Metropolis 
Metropolis-Hasting 
Gibbs 
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Markov Chain Monte Carlo 

Sampling from a CDF -Random Sampling
 Sampling from a CDF - Random sampling
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Markov Chain Monte Carlo 

Latin Hypercube Sampling
 

Stratified Sampling -e.g. Latin hypercube, Orthogonal samplling. 

Latin hypercube sampling, motivated by latin squares, the hypercube 
is in N-D. 

Each row and column have unique selection 
A way to “cover” the square uniformly. 
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Markov Chain Monte Carlo 

LS example
 LS example

Photo Credit: WikipediaPhoto Credit: Wikipedia 
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Markov Chain Monte Carlo 

Orthogonal/Stratified Sampling Example
 Example
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Markov Chain Monte Carlo 

Rejection Sampling
 

y 

x 

αQ(x) 

P(x) 

αQ(x) ≥ P(x)
 

xi ∼ Q(x), yi ∼ U[0, αQ(xi )]
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Markov Chain Monte Carlo 

If yi ≤ P(xi ) accept 
else reject 

+	 Generates Samples 
- Can be very wasteful 
- Needs to be upper bound 

How to avoid waste? 
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Markov Chain Monte Carlo 

Importance Sampling
 

P(x)
f (x)P(x)dx = f (x) Q(x)dx

Q(x) 
Ss1 P(xs)∼= f (xs) xS ∼ Q(x)

S Q(xs) 
, 

s=1 

P(xs) .≡ Importance of sample = ωsQ(xs) 

Ss1
ÎS = f (xs)ωsS 

s=1 

Unbiased 
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Markov Chain Monte Carlo 

Works with Potentials
 

P(x)
I = f (x)p(x)dx = f (x) Q(x)dx

Q(x) 

´ ´Let’s write Zp = P(x)dx & Zq = Q(x)dx 
and define 

Ṕ(x)
P(x) = 

Zp 

Q́(x)
Q(x) = 

Zq 

´Here P(x) is just un-normalized, i.e. a potential as opposed to a 
probability we have access to. 

Q is still a proposal distribution we constructed. 
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Markov Chain Monte Carlo 

Contd.
 

Then, 

I = 
Zq 

Zp 
f (x) 

Ṕ(x) 

Q́(x) 
Q(x)dx 

= 
Zq 

Zp 
f (x)ώ(x)Q(x)dx 

∼= 
Zq 

Zp 
· 1 

S 

Ss 

s=1 

f (xs)ώs; xs ∼ Q(x) 

= 
Zq 

Zp 
· 1 

S 

Ss 

s=1 

f (xs)ώs 

we still don’t know what to do with Zq /Zp! 
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Markov Chain Monte Carlo 

A simple normalization works
 

Turns out 
SsZq 1 

= ώsZp S 
s=1 

So, f 
ˆ s f (xs)´I = f 

ωs 

ώ´ s 

A weighted normalization. 
→Biased 

ś 
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Markov Chain Monte Carlo 

How to select Q ?
 

y 

Bad idea 

Bad idea 
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Markov Chain Monte Carlo 

More on Q
 

1. Must generally “cover” the distribution 
2. Not lead to undue importance 

Q 

P 

Bad! 

3. Uniform is OK when P(.) is bounded 
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Markov Chain Monte Carlo 

What’s different
 

Importance Sampling → 

Does not reject a sample, 
just reweights it 
May be problematic to carry around 
weights during uncertainty propagation 

Rejection Sampling → 

Wastes time (computation)
 
Produces samples
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Markov Chain Monte Carlo 

What’s common
 

- Neither technique scales to high dimension
 
- Sampling (all Monte Carlo so far) is brute force! (Dumb)
 
→ Markov chain Monte Carlo 
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Markov Chain Monte Carlo 

Markov Chain Monte Carlo
 

1.	 A proposal distribution from local moves (not globally, as in 
RS/IS). 
1.1 Local moves could be in some subspace of state space. 

2.	 Move is conditioned on most recent sample 
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Markov Chain Monte Carlo 

Primer
 

P(xi |xi−1) 

x0 x1 x2 xn 

P(x0) P∗(α1) 

Forward Problem: Given Transition end up where? 
MCMC: Given target, how to transition? 
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Markov Chain Monte Carlo 

Transitions, Invariance and Equilibrium 

Contruct a transition 
xt ∼ PT (xt−1) → xt" 1 

Markov chain 

such that the equilibrium distribution π∗ of PT , defined as: 

π ∗ ← PN 
T π0 

is the invariant distribution, i.e. 

π ∗ = PT π ∗ 

Which implies Condition 1: General balance. s 
PT (x ' → x)π ∗ (x ') = π ∗ (x) 

x, 

And, π∗ is the target distribution to sample from. 
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Markov Chain Monte Carlo 

Regularity and Ergodicity
 

Condition #2 (The whole state space is reachable) 

'PT
N (x → x) > o ∀x : π ∗ (x) > 0 

⇒ Ergodicity 
Condition 2 says that all states are reachable, i.e. the chain is 
irreducible. When the states are aperiodic, i.e. transitions don’t 
deterministically return to state i in integer multiples of a period, then 
chain is ergodic. 
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Markov Chain Monte Carlo 

Detailed Balance 

Condition #3: Detailed Balance 

'PT (x → x)π ∗ (x ' ) = PT (x → x ' )π ∗ (x) s s 
' ⇒ PT (x → x)π ∗ (x ' ) = π ∗ (x) P(x → x ' ) (Invariance) 

x , x ," 1 
=1 

Detailed balance implies general balance but easier to check for. 

Detailed balance implies convergence to a stationary distribution 

If π∗ is in detailed balance with PT , then irrespective of π0, there 
is some N for which π0 → πN .
 

Detailed balance implies reversibility.
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Markov Chain Monte Carlo 

Metropolis Hastings
 

'Draw x ∼ Q(x ' ; x), the proposal distribution   
P(x ' )Q(x ; x ' )

a = min 1, 
P(x)Q(x ' ; x)

Accept x’ with prob. a, else retain x. 

⇒ No need to have pmf in Q(x ' ; x) 
⇒ Satisfies detailed balance 
⇒ Equilibrium distribution is target distribution 

Note: PT (x → x ' ) = aQ(x ' ; x) 
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Markov Chain Monte Carlo 

MH Satisfied detailed balance
 

Proof is easy 

π∗(x ' )Q(x ; x ' )'PT (x → x ' )π ∗ (x) = Q(x ; x) min 1, π ∗ (x)
π∗(x)Q(x ' ; x) 

' = min (π ∗ (x)Q(x ; x), π ∗ (x ' )Q(x ; x ' )) 

π∗(x)Q(x ' ; x) 
= Q(x ; x ' ) min , 1 π ∗ (x ' )

π∗(x ')Q(x ; x ') 
' = PT (x → x)π ∗ (x ' ) 
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Markov Chain Monte Carlo 

Limitations of MH
 

There can be other scale-parameterized possibilities. 

Small σ ⇒ Slow sampling 

large σ ⇒ many rejects 

α 

L 

The transition distribution N(x , σ2) ⇒ A local kernel. 

How to select σ adaptively? 
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Markov Chain Monte Carlo 

On Transitions
 

PT
N (xn|xγ ) = PT (xn|xn−1)PT (xn−1|xn−2) . . . P(x1) 

or PT
a (xn|xn−1)PT

b (xn−1|xn−2) . . . 

Each transition can be different and individually not be ergodic 
But if PN leaves P∗ invariant and is ergodic then OK T 

Allows adaptive transitions 
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Markov Chain Monte Carlo 

Gibbs Sampler: a different transition
 Gibbs Sampler: a different transition

Gibbs Sampler: a different transition

Let x = x1, · · · , xn
(a huge dimensional space) and we want to sample
P(x) = P(x1 . . . xn)

P(x) = P(x1)P(x2|x1)P(x3|x2, x1) . . . P(xn|xn�1 . . . x1)

Gibbs:

P(x1)! P(x2|x1)! P(x3|x1, x2)! . . .

! P(xn|xn�1 . . . x1)! P(x1|xi 6=1)! P(x2|xi 6=2) . . .

(note notation change)

Let x = x1, · · · , xn 

(a huge dimensional space) and we want to sample 

P(x) =P(x1 · · · xn) 

P(x) = P(x1)P(x2|x1)P(x3|x2, x1) . . . P(xn|xn−1 . . . x1) 

Gibbs: 

P(x1) → P(x2|x1) → P(x3|x1, x2) → · · · 
→ P(xn|xn − 1 . . . x1) → P(x1|xi i=1) → P(x2|xi i=2) . . . 
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Markov Chain Monte Carlo 

Transitions are simple
 

f 
P(xi , xj=i i )P(xi |xj=i i ) = 'P(xi , xj=i )x , i

i 

Generally only one dimensional! easy to calculate 
Amenable to direct sampling → no need for acceptance 
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Markov Chain Monte Carlo 

Satisfies Detailed Balance
 

' π ∗ (x)PT (x → x ' ) = P(xj , x=i j )P(xj |x=i j ) 
' = P(xj , x i i=j )P(xj |x=j ) 
' = P(xj |x=i j )P(x=j )P(xj |x ii =j ) 
' = P(xj |x=i j )P(xj , x i=j ) 

= π ∗ (x ' )PT (x → x ' ) 
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Markov Chain Monte Carlo 

MCMC caveats
 

Stuck? 
What about burn in?
 

Stuck in a well?
 
MCMC typically started from multiple initial starting points, and
 
information is exchanged between chains to better track the
 
underlying probability surface.
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Markov Chain Monte Carlo 

Slice Sampler
 

Gap is Ok 

(x , y) 

P(y |x) = u[0, P(x)] y ∼ P(y |x) 
x ∼ U[xmin, xmax ] 

1 P(x) ≥ y
P(x |y) ∝ L(x ; y) =

0 otherwise 

Accept if L(x ; y) = 1, reject otherwise 
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Markov Chain Monte Carlo 

Slicing the Slice Sampler
 

1. No step size like M-H. L/σ iterations vs L2/σ2 

2. A kind of Gibbs sampler. 
3. Bracketing and Rejction can be incorporated. 
4. Needs just evaluations of P(x) 
5. Scaling in high dimensions? 

L 
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