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Markov Chain Monte Carlo

» Monte Carlo sampling made for large scale problems via Markov
Chains

» Monte Carlo Sampling
» Rejection Sampling
» Importance Sampling
» Metropolis Hastings

> Gibbs
» Useful for MAP and MLE problems
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Markov Chain Monte Carlo

MONTE CARLO

Example:
1 2
P(x) ~ 05— { e */2 4 g (x-2%/2
(x) 5= 1¢ }

Calculate [(x® + cosh(x))P(x)dx May be difficult!

/f Sfos Xs ~ P(X)

When this becomes
intractable Monte— Carlo
Sampling may
still be feasible
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Properties of Estimator

S

= L3 f06), X~ P(X)

S5
- / F(x)P(x)dx

lim Js =1 + unbiased
S—oo
g
=75

From Introduction Class.
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What’s good about this?

The good

* Quick and “dirty” estimate (sometimes, it’s the only way out)
* Sampling is useful per se

What’s not good?

* Quick and Dirty!
* Rao-Blackwell
= Sample based estimator generally worse
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Methods

Basics _—
Via CDF (random and stratified) Objective
Intermediate > Metropolis
. » Metropolis-Hasting
» Importance Sampling .
» Gibbs

» Rejection Sampling
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Sampling from a CDF -Random Sampling
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Latin Hypercube Sampling

Stratified Sampling -e.g. Latin hypercube, Orthogonal samplling.

Latin hypercube sampling, motivated by latin squares, the hypercube
is in N-D.

» Each row and column have unique selection

» A way to “cover” the square uniformly.
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LS example

Photo Credit: Wikipedia



Orthogonal/Stratified Sampling Example
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Rejection Sampling
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Markov Chain Monte Carlo

If y; < P(x;) accept
else reject

+ Generates Samples

- Can be very wasteful

- Needs to be upper bound
How to avoid waste?
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Importance Sampling

/f(x)P(x)dx: /f(x) gg; Q(x)dx

S
~ 52 Mg X~ QW)
s=1 s

= Importance of sample = w;

S
_
s =5 ; f(Xs)ws

Unbiased
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Markov Chain Monte Carlo

Works with Potentials

I= /f(x)p(x)dx: /f(x) gg; Q(x)dx

Let's write Z, = [ P(x)dx & Z; = [ Q(x)dx

and define )
P(x) = Pé;()
o - 2

Here P(x) is just un-normalized, i.e. a potential as opposed to a
probability we have access to.

Q is still a proposal distribution we constructed.

14
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Markov Chain Monte Carlo

Then,
_ 2 / f(x)gng(x)d
_ 2 / F(X)5(x) Q(x)dx
o 2 . ;Sz:f(xs)ws Xs ~ Q(x)
_ 2 ;gf(xs)ws

we still don’t know what to do with Z;/Z,!

15
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A simple normalization works

Turns out s
Zq 1 ,
Z, 52
So,
j— 25 [(Xs)ws
26 Ws
A weighted normalization.
—Biased
16
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How to select Q ?

Bad idea
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Markov Chain Monte Carlo

More on Q

1. Must generally “cover” the distribution
2. Not lead to undue importance

[—]

3. Uniform is OK when P(.) is bounded
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What'’s different

Importance Sampling —

Does not reject a sample,

just reweights it

May be problematic to carry around
weights during uncertainty propagation

Rejection Sampling —

Wastes time (computation)
Produces samples

Quantifying Uncertainty



What’s common

- Neither technique scales to high dimension
- Sampling (all Monte Carlo so far) is brute force! (Dumb)
— Markov chain Monte Carlo

20
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Markov Chain Monte Carlo

Markov Chain Monte Carlo

1. A proposal distribution from local moves (not globally, as in
RS/IS).

1.1 Local moves could be in some subspace of state space.
2. Move is conditioned on most recent sample

21
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Markov Chain Monte Carlo

Primer
P(X,’|X,‘,1)
Xo ﬁﬁ Xo Xn
O O O O
P(X()} ************************* *P*(Oﬁ)

Forward Problem: Given Transition end up where?
MCMC: Given target, how to transition?

22
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Transitions, Invariance and Equilibrium

Contruct a transition
Xt ~ Pr(Xi—1) = X
N ———

Markov chain

such that the equilibrium distribution 7* of Pr, defined as:
T P¥7T0

is the invariant distribution, i.e.
7 = Prn*

Which implies Condition 1: General balance.

Z Pr(x" — x)n*(x") = 7*(x)

And, 7* is the target distribution to sample from.

23
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Regularity and Ergodicity

Condition #2 (The whole state space is reachable)

PYX = x)>0 V¥x:7*(x)>0

= Ergodicity

Condition 2 says that all states are reachable, i.e. the chain is
irreducible. When the states are aperiodic, i.e. transitions don'’t
deterministically return to state i in integer multiples of a period, then
chain is ergodic.

24
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Detailed Balance

Condition #3: Detailed Balance
Pr(x" — x)w*(x’) = Pr(x — x")m*(x)
= Z Pr(x" — x)7* Z P(x — x") (Invariance)

_,_
=1

v

Detailed balance implies general balance but easier to check for.

v

Detailed balance implies convergence to a stationary distribution

v

If 7* is in detailed balance with Pr, then irrespective of mg, there
is some N for which mg — 7.

v

Detailed balance implies reversibility.
25
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Metropolis Hastings

Draw x’ ~ Q(x’; x), the proposal distribution

P(x")Q(x; x’))

a=min (1, 7P(X)Q(X’;X)

Accept x” with prob. a, else retain x.

= No need to have pmfin Q(x’; x)
= Satisfies detailed balance
= Equilibrium distribution is target distribution

Note: Pr(x — x’) = aQ(x’; x)

26
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Markov Chain Monte Carlo

MH Satisfied detailed balance

Proof is easy

Pr(x — x')7*(x) = Q(x'; x) min (1 : 7;(’()0(’”()) 7 (X)

27
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Markov Chain Monte Carlo

Limitations of MH

The transition distribution N(x,o2) = A local kernel.
There can be other scale-parameterized p033|b|I|t|es

large o = many rejects

Small o = Slow sampling

How to select o adaptively?

28
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On Transitions

PY(xalX,) = Pr(Xn|Xn_1)Pr(Xn_1|Xn_2) . .. P(x1)

or P%(Xn|Xn—1 )P?(Xn_1 |Xn—2) ...

» Each transition can be different and individually not be ergodic
» Butif P} leaves P* invariant and is ergodic then OK
» Allows adaptive transitions

29
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Markov Chain Monte Carlo

Gibbs Sampler: a different transition
m’

Dy

Letx =Xy, -+, Xp
(a huge dimensional space) and we want to sample

P(x) =P(xt - Xn)
P(x) = P(x1)P(x2|x1)P(X3|X2, X1) . . . P(Xp|Xp—1...X1)

Gibbs:

P(X1) — P(X2|X1) — P(X3|X1,X2) — e
— P(Xn|Xn -1 ...X1) — P(X1|X,‘751) — P(X2|X,‘752) e
30
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Transitions are simple

_ P, Xiz)
2 x PO Xizi)

Generally only one dimensional! easy to calculate
Amenable to direct sampling — no need for acceptance

P(xi|Xjzi)

31
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Satisfies Detailed Balance

32
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Markov Chain Monte Carlo

MCMC caveats

Stuck?
What about burn in?

Stuck in a well?

MCMC typically started from multiple initial starting points, and
information is exchanged between chains to better track the
underlying probability surface.

33
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Slice Sampler

Gap is Ok

P(y|x) = ul0, P(x)] y ~ P(y|x)
X ~ U[xmin, xmax]
1 Px)=y

P(x|y)o<L(x;y):{ 0 otherwise

Accept if L(x; y) = 1, reject otherwise
34
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Slicing the Slice Sampler

No step size like M-H. L /o iterations vs L2/o?
A kind of Gibbs sampler.

Bracketing and Rejction can be incorporated.
Needs just evaluations of P(x)

Scaling in high dimensions?

L

ok~ bh =

35
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