Quantifying Uncertainty

Sai Ravela

M. I. T

Last Update: Spring 2013

Contents

1 Expectation Maximization
2 Model Selection

Quick Recap

1 To model uncertainties in data, we represent it by probability density/mass.

2 These densities can be parametric forms, the exponential family is useful.

3 The parameters of the density functions may be inferred using a Bayesian approach.

4 It is particularly useful to use conjugate priors in the exponential family for the estimation of the density functionï $¿ \frac{1}{2} s$ parameters.

Density Estimation

We want to estimate the parameters that control a Probability mass function $\mathrm{P}(\mathrm{Y}=x ; \theta)$ from data.
For example, they could be the natural parameter in the exponential family of distributions, the mixing ratios in a mixture model etc. A Bayesian approach to this problem would be to represent the unknown parameter as a random variable and consider its distribution i.e.

$$
P(\theta \mid Y) \propto P(Y \mid \theta) P(\theta)
$$

Methodological Space

Recall

Likelihood from Exponential Families:

$$
\begin{gathered}
I(\theta)=\sum \ln p\left(x_{i} \mid \theta\right)=\sum \ln h\left(x_{i}\right)+\theta^{T} T\left(x_{i}\right)-A(\theta) \\
\frac{d l}{d \theta}=0 \Rightarrow \frac{1}{N} \sum_{i} T\left(x_{i}\right)=\frac{d A}{d \theta}
\end{gathered}
$$

Example

$$
\begin{gathered}
p\left(x_{i} \mid \mu, \sigma\right)=1 / \sqrt{2 \pi \sigma} e^{\left(x_{i}-\mu\right)^{2} / 2 \sigma^{2}} \\
\underline{\theta}=\left[\begin{array}{c}
\frac{\mu}{\sigma^{2}} \\
-\frac{1}{2 \sigma^{2}}
\end{array}\right] ; T\left(x_{i}\right)=\left[\begin{array}{c}
x_{i} \\
x_{i}^{2}
\end{array}\right] ; A(\underline{\theta})=-\frac{\theta_{1}^{2}}{4 \theta_{2}}-\frac{1}{2} \log \left(-2 \theta_{2}\right) \\
d A / d \theta_{1}=\frac{1}{N} \sum_{i} T_{1}=\frac{1}{N} \sum_{i} x_{i}(=\mu) \\
d A / d \theta_{2}=\frac{1}{N} \sum_{i} T_{2}=\frac{1}{N} \sum_{i} x_{i}\left(=\mu^{2}+\sigma^{2}\right)
\end{gathered}
$$

Using an optimization

For more complicated distributions, some optimization procedure can be applied:
Let $F(\underline{\theta}) \doteq d A / d \underline{\theta}$ and $\frac{1}{N} \sum_{i} T\left(x_{i}\right)=\underline{z}$
Then solve: $\|\underline{z}-F(\underline{\theta})\|$
E.g. Levenberg-Marquardt:

$$
J \doteq \frac{\partial F}{\partial \underline{\theta}}
$$

Then,

$$
\left[J^{\top} J+\lambda \operatorname{tr}\left(J^{\top} J\right)\right] \delta \underline{\theta}^{(i)}=J^{\top}\left(\underline{z}-F(\underline{\theta})^{(i)}\right)
$$

update, increment and iterate.
If you can easily calculate gradients, you could get fast (quadratic) convergence.

The Problem

Taking gradients is not always easy in closed form, and can be non-robust in numerical form especially with "noisy" likelihoods. What's the alternative?
E.g. Mixture Density:

$$
\begin{aligned}
& p\left(\underline{x}_{i} \mid \underline{\theta}, \underline{\alpha}\right)=\sum_{s=1}^{s} \alpha_{s} G\left(\underline{x}_{i} ; \underline{\theta}_{s}\right) \\
& P(\chi \mid \underline{\theta}, \underline{\alpha})=\prod_{i=1}^{N} \sum_{s=1}^{s} \alpha_{s} G\left(\underline{x}_{i} ; \underline{\theta}_{s}\right)
\end{aligned}
$$

$$
\begin{aligned}
P(\underline{\theta}, \underline{\alpha} \mid \chi) & \propto P(\chi \mid \underline{\theta}, \underline{\alpha}) P(\underline{\theta}, \underline{\alpha}) \\
& =P(\underline{\theta}, \underline{\alpha}) \prod_{i=1}^{N} \sum_{S=1}^{S} \alpha_{S} G\left(\underline{x}_{i} ; \underline{\theta}_{s}\right)
\end{aligned}
$$

Contd.

$$
J(\underline{\theta}, \underline{\alpha})=\log P(\underline{\theta}, \underline{\alpha} \mid \chi) \propto \log P(\underline{\theta}, \underline{\alpha})+\sum_{i=1}^{N} \log \left(\sum_{s=1}^{s} \alpha_{s} G\left(\underline{x}_{i} ; \underline{\theta}_{s}\right)\right)
$$

This is difficult, even when the prior is "trivial"

What's the mixture

Data given $x_{i} \in \chi$, what is its $p m f(p d f)$?
Mixture: How many members? Let's assume we know, even then: What are the mixing proportions? Distribution parameters?

How can this problem be made easy?

What if someone tells you a key piece of missing information, i.e. which member of the distribution a data point comes from.

Then this is trivial!

What if?

We estimate an an expectation of the missing information, under a "complete distribution" that we also propose.

Then we maximize for the best set of parameters from that expectation.

We reuse the parameters to calculate a new expectation and keep iterating to convergence.

Thatï $<\frac{1}{2} s$ the EM algorithm in a nutshell.
Just what is the "complete distribution", what are we expectating and what does all this converge to?

Formulation

$$
\begin{aligned}
& p\left(\theta \mid X_{i}\right) \propto P\left(X_{i} \mid \theta\right) P(\theta) \\
& \log P\left(\theta \mid X_{i}\right) \propto \underbrace{\log P\left(X_{i} \mid \theta\right)}_{1}+\log P(\theta) \\
& 1 \rightarrow \log P\left(X_{i}, \theta\right)=\log \sum_{y i} P\left(X_{i}, Y_{i} \mid \theta\right)
\end{aligned}
$$

Introduce an iterative form:
Assuming an estimate of $\theta \Rightarrow \hat{\theta}^{(t)}$
So,

$$
Q\left(\theta \mid \hat{\theta}^{(t)}\right)=\log P\left(\theta \mid X_{i}, \hat{\theta}^{(t)}\right)
$$

Contd.

Rewriting 1:

$$
\begin{aligned}
\log P\left(X_{i} \mid \theta\right) & =\log \sum_{y i} P\left(X_{i}, Y_{i} \mid \theta\right) \\
& =\log \sum_{y i} \frac{\phi\left(Y_{i}\right) P\left(X_{i}, Y_{i} \mid \theta\right)}{\phi\left(Y_{i}\right)}
\end{aligned}
$$

$\phi\left(Y_{i}\right)$ is a distribution that "lower bounds" the likelihood
A. So, it must trade $P\left(X_{i}, Y_{i} \mid \theta\right)$ i.e

$$
\frac{P\left(X_{i}, Y_{i} \mid \theta\right)}{\phi\left(Y_{i}\right)}=\kappa \text { (some constant) }
$$

Contd. 2

B. $\sum_{y_{i}} \phi\left(y_{i}\right)=1$; it is a probability mass function
C. It exploits the availability of $\hat{\theta}^{(t)}$

$$
\begin{aligned}
\Rightarrow \phi\left(y_{i}\right) & =\frac{P\left(Y_{i}, X_{i} \mid \hat{\theta}^{(t)}\right)}{\sum_{y} P\left(Y_{i}=y, X_{i} \mid \hat{\theta}^{(t)}\right)} \\
& =\frac{P\left(Y_{i}, X_{i} \mid \hat{\theta}^{(t)}\right.}{P\left(X_{i} \mid \hat{\theta}^{(t)}\right)} \\
& =P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t)}\right)
\end{aligned}
$$

So, it proposes a bound \Rightarrow likelihood of missing data from most recent estimate of θ.

Contd. 3

$$
\begin{aligned}
& Q\left(\theta \mid \hat{\theta}^{(t)}\right)=\log P(\theta)+\log \sum_{y_{i}} \frac{P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t)}\right) P\left(X_{i}, Y_{i} \mid \theta\right)}{P\left(Y_{i}, \mid X_{i}, \hat{\theta}^{(t)}\right)} \\
& =\log P(\theta)+\log E\left[\frac{P\left(X_{i}, Y_{i} \mid \theta\right.}{P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t)}\right)}\right] \\
& \geq \log P(\theta)+E \log \left[\frac{P\left(X_{i}, Y_{i} \mid \theta\right)}{P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t)}\right)}\right] \\
& =\log P(\theta)+E\left[\log P\left(X_{i}, Y_{i} \mid \theta\right)\right]-E\left[\log p\left(Y_{i}, X_{i}, \hat{\theta}^{(t)}\right)\right] \quad H\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t)}\right) \\
& \equiv \log P(\theta)+E\left[\log P\left(X_{i}, Y_{i} \mid \theta\right)\right]
\end{aligned}
$$

Contd. 4

So, E-STEP:

$$
\begin{aligned}
\left.Q\left(\theta \mid \hat{\theta}^{(t)}\right)\right) & \equiv \log P(\theta)+E\left[\log P\left(X_{i}, Y_{i} \mid \theta\right)\right] \\
& =\log P(\theta)+\sum_{Y_{i}} P\left(Y \mid X_{i}, \hat{\theta}^{(t)}\right) \times \log P\left(X_{i}, Y_{i} \mid \theta\right)
\end{aligned}
$$

The prior + the expectation under $\hat{\theta}^{(t)}$ given, over missing variable Y_{i}.

Contd. 5

M-STEP

$$
\hat{\theta}^{(t)}=\operatorname{ag} \max _{\theta} Q\left(\theta \mid \hat{\theta}^{(t)}\right)
$$

alternate the two!
For many data samples $X_{1}, X_{2}, \ldots X_{N} \in \chi$

$$
Q\left(\theta \mid \hat{\theta}^{(t)}\right) \equiv \sum_{i} \sum_{Y_{i}} P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t)}\right) \log P\left(X_{i}, Y_{i} \mid \theta\right)+\log P(\theta)
$$

Measuring Similarity between Distributions

Kullback-Leibler Divergence
Distributions: $P(X), Q(X)$
Divergence: $D(P \| Q)=\sum_{x} P(X) \log \frac{P(X)}{Q(X)}$
Interpretation: The cost of coding the "true" distribution $P(X)$ using a model distribution $Q(X)$

Interpretation:

$$
\begin{aligned}
D(P \| Q) & =-\sum_{x} P(X) \log Q(X)-(-P(X) \log P(X)) \\
& =H(P, Q)-H(P)
\end{aligned}
$$

The relative entropy.

More

KL-Divergence is a broadly useful measure, for example:
Shannon Entropy: $H(X)=\log N-D(P(X)| | U(X))$, departure from the uniform distribution.

Mutual Information: $(X ; Y)=D(P(X, Y) \| P(X) P(Y))$
Let's try to interpret EM in terms of KL divergence.

EM Interpretation

$$
\begin{aligned}
& \log P(\theta)+E \log \frac{P\left(X_{i}, Y_{i} \mid \theta\right)}{P\left(Y_{i}, X_{i}, \hat{\theta}^{(t)}\right)} \\
& =\log P(\theta)-\sum P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t)}\right) \log \left[\frac{P\left(X_{i}, Y_{i} \mid \theta\right)}{P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t)}\right)}\right] \\
& =\log P(\theta)+\log P\left(X_{i} \mid \theta\right)+\sum P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t)}\right) \log \left[\frac{P\left(Y_{i} \mid X_{i}, \theta\right)}{P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t)}\right)}\right] \\
& \equiv \log P\left(\theta, X_{i}\right)-\sum P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t)}\right) \times \log \left[\frac{P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t)}\right)}{P\left(Y_{i} \mid X_{i}, \theta\right)}\right]
\end{aligned}
$$

Contd.

$$
\therefore Q\left(\theta \mid \hat{\theta}^{(t)}\right)=\log P\left(\theta \mid X_{i}\right)-\underbrace{\mathcal{D}\left(P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t)}\right) \| P\left(Y_{i} \mid X_{i}, \theta\right)\right)}_{\begin{array}{c}
\text { KL-Divergence between estimates and } \\
\text { optimal conditional distributions } \\
\text { of missing data }
\end{array}}
$$

$$
\mathcal{D} \rightarrow 0 \Rightarrow Q\left(\theta \mid \hat{\theta}^{(t)}\right) \rightarrow \log P\left(\theta \mid X_{i}\right) \quad(\text { Recall }, \mathcal{D} \geq 0)
$$

Notes

1 The M-step can produce any $\hat{\theta}^{t+1}$ that improves Q, not just the maximum (at each iteration). That's Generalized EM (GEM).
2 M can be simpler to formulate for an MLE problem, and easier to implement than gradient-based methods. A huge explosion of applications, as a result.

In applications of mixture modeling, EM method is synonymous with density estimation.
3 Convergence can be slow, i.e. if you can do Newton-Raphson (for example), do it.

What does it converge to?

Recall: $\mathcal{D}(P \| Q) \geq 0, \quad \mathcal{D}(P \| P)=0 . \quad \mathcal{D}(Q \| Q)=0$

$$
\begin{aligned}
Q\left(\theta \mid \hat{\theta}^{(t)}\right. & =\sum_{i} \log P\left(\theta \mid X_{i}\right)-\mathcal{D}\left[P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t)}\right) \| P\left(Y_{i} \mid X_{i}, \theta\right)\right] \\
\therefore Q\left(\hat{\theta}^{(t)} \mid \hat{\theta}^{(t)}\right) & =\sum_{i} \log P\left(\hat{\theta}^{(t)} \mid X_{i}\right) \\
Q\left(\hat{\theta}^{(t)} \mid \hat{\theta}^{(t)}\right) & =\sum_{i} \log P\left(\hat{\theta}^{(t+1)} \mid X_{i}\right)-\mathcal{D}\left[P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t)}\right) \| P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t+1)}\right)\right]
\end{aligned}
$$

Contd.

$$
\begin{aligned}
\underbrace{Q\left(\hat{\theta}^{(t+1)} \mid \hat{\theta}^{(t)}\right)}_{Q_{t+1}} & \geq \underbrace{Q\left(\hat{\theta}^{(t)} \mid \hat{\theta}^{(t)}\right)}_{Q_{t}}, \text { by construction } \\
Q_{t+1}-Q_{t} & \geq 0
\end{aligned}
$$

$$
\begin{aligned}
\sum_{i} \log P\left(\hat{\theta}^{(t+1)} \mid X_{i}\right)-\log P\left(\hat{\theta}^{(t)} \mid X_{i}\right) & \geq \mathcal{D}\left[P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t)}\right) \| P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(t+1)}\right]\right. \\
& \geq 0
\end{aligned}
$$

Posterior improves !

Stationary Points

$$
\begin{aligned}
& \left.\frac{d Q\left(\theta \mid \hat{\theta}^{(t)}\right)}{d \theta}\right|_{t=\infty}= \\
& \left.\sum_{i} \frac{\partial \log P\left(\theta \mid X_{i}\right)}{\partial \theta}\right|_{\theta=\hat{\theta}^{(t)}}-\left.\frac{\partial \mathcal{D}\left[P\left(Y_{i} \mid X_{i}, \hat{\theta}^{(\infty)}\right) \| P\left(Y_{i} \mid \widehat{\left.\left.X_{i}, \theta\right)\right]}\right.\right.}{\partial \theta}\right|_{\theta=\hat{\theta}(\infty)} \\
& \left.\Rightarrow \sum_{i} \frac{\partial \log P\left(\theta \mid X_{i}\right)}{\partial \theta}\right|_{\theta=\hat{\theta}(\infty)}=0
\end{aligned}
$$

A stationary point of a posterior.

Gaussian Mixture Model

$$
\begin{aligned}
\prod_{i=1}^{N} & {\left[\sum_{s=1}^{s} \alpha_{s} P\left(X_{i} \mid \theta_{s}\right)\right] \times P\left(\theta_{s}\right) \quad / / M A P } \\
\alpha & \equiv \sum_{i=1}^{N} \log \sum_{s=1}^{s} \alpha_{s} P\left(X_{i} \mid \theta_{s}\right)+\log P\left(\theta_{s}\right) \quad \text { only MLE for now } \\
& \geq \sum_{i=1}^{N} \sum_{s=1}^{S} \log \left[\alpha_{s} P\left(X_{i} \mid \theta_{s}\right)\right]
\end{aligned}
$$

How to solve?

Contd.

Suppose there is an indicator variable $Y_{i, s}$
$Y_{i, s} \in\{0,1\}$ and it is 1 when data X_{i} is drawn from distribution θ_{s}, then "total" likelihood (including "missing" data $Y_{i, s}$)

$$
\alpha_{\text {TOT }} \equiv \sum_{i=1}^{N} \sum_{s=1}^{S} Y_{i, s} \log \left[\alpha_{s} P\left(X_{i} \mid \theta_{s}\right)\right]
$$

we have to add constraint $\sum_{j} \alpha_{j}=1$, so

$$
\mathcal{L}_{\text {TOT }}+\lambda\left[\sum_{j} \alpha_{j}-1\right]=L
$$

Differentiating, we get:

$$
\begin{aligned}
& \frac{\partial L}{\partial \alpha_{s}}=\sum_{i=1}^{N} \frac{Y_{i, s}}{\alpha_{s}}+\lambda=0 \\
& \Rightarrow \hat{\alpha}_{s}=\frac{\sum_{i=1}^{N} Y_{i, s}}{-\lambda}
\end{aligned}
$$

Because

$$
\begin{aligned}
& \sum_{i=1}^{N} Y_{i, s}+\lambda \alpha_{s}=0 \quad \forall s \\
\therefore & \sum_{s=1}^{S} \sum_{i=1}^{N} Y_{i, s}+\lambda \alpha_{s}=0 \\
& \sum_{s=1}^{S} \alpha_{s}=1, \quad \sum_{s=1}^{S} Y_{i, s}=1 \Rightarrow \therefore\left\{\begin{array}{l}
-\lambda=N \\
30
\end{array} \quad \text { or } \hat{\alpha}_{s}=\frac{\sum_{i=1}^{N} Y_{i, s}}{N}\right.
\end{aligned}
$$

Contd.

And

$$
\hat{\theta}_{s} \equiv \arg \max _{\theta_{s}} \sum_{i=1}^{N} Y_{i, s} \log \left(\alpha_{s} P\left(X_{i} \mid \theta_{s}\right)\right)
$$

No interaction between mixture elements given $Y_{i, s}$! But we do not know $Y_{i, s}$, we estimated it through

$$
P(Y_{i, s} \mid X_{i}, \underbrace{\hat{\theta}_{s}^{(t)}, \hat{\alpha}_{s}^{(t)}}_{\begin{array}{c}
\text { Current } \\
\text { estimates }
\end{array}})
$$

Contd.

We need to define: $Q\left(\underline{\theta}, \alpha \mid \underline{\hat{\theta}}^{(t)}, \hat{\alpha}^{(t)}\right)$

$$
P\left(Y_{i, s} \mid X_{i}, \hat{\theta}_{s}^{(t)}, \underline{\hat{\alpha}}_{s}^{(t)}\right)=w_{i, s}=\frac{\hat{\hat{\alpha}}_{s}^{(t)} P\left(X_{i} \mid \hat{\theta}_{s}^{(t)}\right)}{\sum_{r} \underline{\hat{\hat{\alpha}}}_{r}^{(t)} P\left(X_{i} \mid \hat{\theta}_{r}^{(t)}\right)}
$$

$Q \equiv \sum_{i=1}^{N} \sum_{s=1}^{s} w_{i, s} \log \frac{\alpha_{s} P\left(X_{i} \mid \underline{\theta}_{s}\right)}{w_{i, s}}+\lambda\left(\sum_{j} \alpha_{j}-1\right) / / w_{i, s}$ lower bounds

$$
\begin{aligned}
& \frac{\partial Q}{\partial \alpha_{s}}=\sum_{i=1}^{N} \frac{w_{i, s}}{\alpha_{s}}+\lambda=0 \\
& \Rightarrow \hat{\alpha}_{s}^{(t+1)}=\frac{\sum_{i=1}^{N} w_{i, s}}{N} \\
& 32
\end{aligned}
$$

Contd.

From exponential Family:

$$
\log P\left(X_{i} \mid \underline{\theta}_{s}\right)=\log h(x)+\underline{\theta}_{s}^{T} T\left(X_{i}\right)-A\left(\underline{\theta}_{s}\right) / / \text { exponential family }
$$

$$
\begin{aligned}
\frac{d Q}{d \underline{\theta}} & =\sum_{i=1}^{N} w_{i, s} T\left(X_{i}\right)-\sum_{j=1}^{N} w_{j, s} \frac{d A}{d \underline{\theta}_{s}} \\
& \Rightarrow \frac{d A}{d \underline{\theta}_{s}}=\frac{\sum_{i=1}^{N} w_{i, s} T\left(X_{i}\right)}{\sum_{i=1}^{N} w_{i, s}}
\end{aligned}
$$

Contd.

So,

$$
\begin{gathered}
\frac{d A}{d \theta_{1}}=0 \Rightarrow \underline{\hat{\mu}}^{t+1}=\frac{\sum_{i=1}^{N} w_{i, s} X_{i}}{\sum_{i=1}^{N} w_{i, s}} \\
\frac{d A}{d \theta_{2}}=0 \Rightarrow \hat{\Sigma}^{t+1}+\left[\hat{\mu} \hat{\mu}^{T}\right]^{t+1}=\frac{\sum_{i=1}^{N} w_{i, s} X_{i} X_{i}^{T}}{\sum_{i=1}^{N} w_{i, s}}
\end{gathered}
$$

Recall

$$
T\left(\alpha_{1}\right)=\left[\begin{array}{c}
X_{i} \\
X_{i} X_{i}^{\top}
\end{array}\right]
$$

Example

Convergence

Model selection

How do we know how many members exist in the mixture? How to estimate it?

What is the best model to pick?
mpirical: Bootstrap, Jacknife, Cross-validation.
Algorithmic: AICc, BIC, MDL, MML (there are others, e.g. SRM).

Cross-Validation

You produce K sample sets, train on $\mathrm{K}-1$, test on the remaining. Do this in turn. The simplest way to estimate parameter uncertainty, and produce somewhat robust result.

For 2-way cross-validation, you get the classical "Train \& Test" data sets.

Algorithmic Approach

$P(\chi \mid \theta)$ is the true likelihood - of some "perfect" representation of the data.
$Q\left(\chi \mid \theta_{n}\right)$ is the approximate likelihood - of a model of the data. We want to figure out if Q is any good.
If we knew $P(\chi \mid \theta)$, we could calculate the KL-Divergence

$$
D(P \| Q)=\sum_{x} P(\chi=x \mid \theta) \log \frac{P(\chi=x \mid \theta)}{Q(\chi=x \mid \theta)}=H(P, Q)-H(P)
$$

So, we may minimize "cross-entrop" or maximize ?

$$
E_{p}\left[\log Q\left(\chi=x \mid \theta_{n}\right)\right]
$$

Will this work?

Take 2

Let's assume smoothness in Q and take a Taylor Expansion: $\log Q\left(\chi, \theta_{n}\right) \doteq L\left(\chi, \theta_{n}\right)$

$$
\begin{aligned}
L\left(\chi, \theta_{n}\right) & =L\left(\chi, \hat{\theta}_{n}\right)+\left.\left(\theta_{n}-\hat{\theta}_{n}\right)^{T} \frac{\partial L}{\partial \theta}\right|_{\theta=\theta_{n}^{0}} \\
& +\frac{1}{2}\left(\theta_{n}-\hat{\theta}_{n}\right)^{T} \frac{\partial^{2} L}{\partial \theta^{2}}\left(\theta_{n}-\hat{\theta}_{n}\right)
\end{aligned}
$$

An Information Criterion

$$
\begin{aligned}
E_{p}\left[L\left(\chi, \theta_{n}\right)\right] & =E_{p}\left[L\left(\chi, \hat{\theta}_{n}\right)\right]-E_{p}\left[\frac{1}{2}\left(\theta_{n}^{0}-\hat{\theta}_{n}\right)^{T} \sum^{-1}\left(\theta_{n}^{0}-\hat{\theta}_{n}\right)\right] \\
& =E_{p}\left[L\left(\chi, \hat{\theta}_{n}\right)\right]-E_{p}\left[\frac{1}{2} \sum^{-1}\left(\theta_{n}^{0}-\hat{\theta}_{n}\right)\left(\theta_{n}^{0}-\hat{\theta}_{n}\right)^{T}\right] \\
& =E_{p}\left[L\left(\chi, \hat{\theta}_{n}\right)\right]-\operatorname{Tr}\left[\frac{1}{2} I_{n}\right] \\
& =E_{p}\left[L\left(\chi, \hat{\theta}_{n}\right)\right]-\operatorname{Tr}\left[\frac{1}{2} n\right]
\end{aligned}
$$

An unbiased estimate is: $L\left(\chi, \hat{\theta}_{n}\right)-\frac{1}{2} n$
Giving a criterion: $-L\left(\chi, \hat{\theta}_{n}\right)+2 n$, for which we seek minimum.
For Gaussian: $N \ln \sigma^{2}+2 n$ ($\mathrm{N}=$ =number of samples, $\mathrm{n}=$ size of model, e.g. number of mixtures)

Akaike Information Criterion (AIC)

OK, but we don't know Ep; so, we cross-validate. Let's assume we have an independent data set from which we estimate parameters $\theta_{n}^{(x)}$

We write out the log-likelihood as $\ln P(\cdot)=E_{x} \ln Q\left(\chi, \theta_{n}^{(x)}\right)$ and evaluate $E_{p}(\ln P)=E_{p}\left(E_{x}\left(\ln Q\left(\chi, \theta_{n}^{(x)}\right)\right)\right)$

This gives the AIC criterion: $-2 L\left(\chi, \hat{\theta}_{n}\right)+2 n$

Others

AICc: Correction to AIC for small samples: $-2 L\left(\chi, \hat{\theta}_{n}\right)+\frac{2 N}{N-n-1} n$ BIC: $-2 L\left(\chi, \hat{\theta}_{n}\right)+n \ln N$

There are other information theoretic criteria, not covered here: MDL (Minimum Description Length) and MML (Minimum Message Length) are both powerful.

Model Selection is not a settled question! You should try multiple model selection criterion and evaluate.

Example

Zoomed

MIT OpenCourseWare
http://ocw.mit.edu

12.S990 Quantifying Uncertainty

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

