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Quick Recap
 

1	 To model uncertainties in data, we represent it by probability 
density/mass. 

2	 These densities can be parametric forms, the exponential family is 
useful. 

3	 The parameters of the density functions may be inferred using a 
Bayesian approach. 

4	 It is particularly useful to use conjugate priors in the exponential 
family for the estimation of the density functionï¿ 1

2 s parameters. 
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Density Estimation
 

We want to estimate the parameters that control a Probability mass 
function P(Y = x;θ) from data. 
For example, they could be the natural parameter in the exponential 
family of distributions, the mixing ratios in a mixture model etc. 
A Bayesian approach to this problem would be to represent the 
unknown parameter as a random variable and consider its distribution 
i.e. 

P(θ|Y ) ∝ P(Y |θ)P(θ) 

4

Quantifying Uncertainty 



Methodological Space
 

Density 
Estimation 

MLE 

MAP 

Optim 

EM 

MCMC 

Kernel 
Methods 

Red. Rank 

PPM 

Sparse Priors 
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Recall
 

Likelihood from Exponential Families: 

I(θ) = ln p(xi |θ) = ln h(xi ) + θT T (xi ) − A(θ) 

dl 1 dA 
= 0 ⇒ T (xi ) = 

dθ N dθ 
i 
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Example
 

√ 
(xi −µ)2

p(xi |µ, σ) = 1/ 2πσe /2σ2 

    µ xi θ2 1 
θ = σ2

1 ; T (xi ) = x2 ; A(θ) = − 1 − log(−2θ2)− 2σ2 i 4θ2 2 

1 1
dA/dθ1 = T1 = xi (= µ)

N N 
i i 

2dA/dθ2 = 
1 

T2 = 
1 

xi (= µ + σ2)
N N 

i i 
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Using an optimization
 

For more complicated distributions, some optimization procedure can 
be applied: 
Let F (θ) = 

. dA/dθ and 1  
i T (xi ) = zN

Then solve: ||z − F (θ)||
E.g. Levenberg-Marquardt: 

. ∂F
J = 

∂θ 

Then, 
[JT J + λtr(JT J)]δθ(i) = JT (z − F (θ)(i)) 

update, increment and iterate.
 
If you can easily calculate gradients, you could get fast (quadratic)
 
convergence.
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The Problem
 

Taking gradients is not always easy in closed form, and can be 
non-robust in numerical form especially with “noisy” likelihoods. 
What’s the alternative? 
E.g. Mixture Density: 

s 

p(xi |θ, α) = αsG(xi ; θs) 
s=1 

N sN 
P(χ|θ, α) = αsG(xi ; θs) 

i=1 s=1 

P(θ, α|χ) ∝ P(χ|θ, α)P(θ, α) 
N SN 

= P(θ, α) αsG(xi ; θs) 
i=1 S=1 
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Contd.
 

N S 

J(θ, α) = log P(θ, α|χ) ∝ log P(θ, α) + log αsG(xi , ; θs) 
i=1 s=1 

This is difficult, even when the prior is “trivial” 
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What’s the mixture
 
What’s the Mixture

Data given xi 2 X , what is its pmf (pdf)?

Mixture: How many members? Let’s assume we know, even then:

What are the mixing proportions? Distribution parameters?

Data given xi ∈ χ, what is its pmf (pdf )?
 
Mixture: How many members? Let’s assume we know, even then:
 
What are the mixing proportions? Distribution parameters?
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How can this problem be made easy?
 

What if someone tells you a key piece of missing information, i.e. 
which member of the distribution a data point comes from. 

How can this problem be made easy?

What if someone tells you a key piece of missing information, i.e.
which member of the distribution a data point comes from.

Then this is trivial!Then this is trivial! 
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What if?
 

We estimate an an expectation of the missing information, under a 
“complete distribution” that we also propose. 

Then we maximize for the best set of parameters from that 
expectation. 

We reuse the parameters to calculate a new expectation and keep 
iterating to convergence. 

Thatï¿ 1 s the EM algorithm in a nutshell. 2 

Just what is the “complete distribution”, what are we expectating and 
what does all this converge to? 
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Formulation
 

p(θ|Xi ) ∝ P(Xi |θ)P(θ) 

log P(θ|Xi ) ∝ log P(Xi |θ)+ log P(θ)" v- ' 
1 

1 → log P(Xi , θ) = log P(Xi , Yi |θ) 
yi 

Introduce an iterative form: 
Assuming an estimate of θ ⇒ θ̂(t) 

So, 
Q(θ|θ̂(t)) = log P(θ|Xi , θ̂

(t)) 
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Rewriting 1: 

log P(Xi |θ) = log P(Xi , Yi |θ) 
yi 

φ(Yi )P(Xi , Yi |θ) 
= log 

φ(Yi )yi 

φ(Yi ) is a distribution that “lower bounds” the likelihood 
A.	 So, it must trade P(Xi , Yi |θ) i.e
 

P(Xi , Yi |θ)
 
= κ (some constant) 

φ(Yi ) 
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B.	 yi 
φ(yi ) = 1; it is a probability mass function
 

θ(t)
C. It exploits the availability of ˆ

P(Yi , Xi |θ̂(t))⇒ φ(yi ) = 
P(Yi = y , Xi |θ̂(t))y 

θ(t)P(Yi , Xi |ˆ
= 

P(Xi |θ̂(t)) 
= P(Yi |Xi , θ̂

(t)) 

So, it proposes a bound ⇒ likelihood of missing data from most 
recent estimate of θ. 
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Contd. 3
 

ˆP(Yi |Xi , θ
(t))P(Xi , Yi |θ)Q(θ|θ̂(t)) = log P(θ) + log 

θ̂(t))yi 
P(Yi , |Xi ,   

P(Xi , Yi |θ 
= log P(θ) + log E

θ̂(t))P(Yi |Xi , 

  
P(Xi , Yi |θ)≥ log P(θ) + E log

θ̂(t))P(Yi |Xi , 

θ̂(t)) H(Yi |Xi ,  
= log P(θ) + E [log P(Xi , Yi |θ)] −

 
E
   

   
  

log p(Yi , Xi , θ̂
(t))

≡ log P(θ) + E [log P(Xi , Yi |θ)] 
17

Quantifying Uncertainty 

∑



�

Contd. 4 

So, E-STEP: 

Q(θ|θ̂(t))) ≡ log P(θ) + E [log P(Xi , Yi |θ)] 
ˆ= log P(θ) + P(Y |Xi , θ
(t)) × log P(Xi , Yi |θ) 

Yi 

The prior + the expectation under θ̂(t) given, over missing variable Yi . 
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M-STEP 

θ̂(t) = ag max Q(θ|θ̂(t)) 
θ 

alternate the two!
 
For many data samples X1, X2, . . . XN ∈ χ
 

Q(θ|θ̂(t)) ≡ P(Yi |Xi , θ̂
(t)) log P(Xi , Yi |θ) + log P(θ) 

i Yi 
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Measuring Similarity between Distributions
 

Kullback-Leibler Divergence
 
Distributions: P(X ), Q(X )
 

Divergence: D(PIQ) = P(X ) log P(X )
 
x Q(X ) 

Interpretation: The cost of coding the “true” distribution P(X ) 
using a model distribution Q(X ) 

Interpretation: 

D(P||Q) = − 
x 

P(X ) log Q(X ) − (−P(X ) log P(X )) 

= H(P, Q) − H(P) 

The relative entropy. 
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More
 

KL-Divergence is a broadly useful measure, for example:
 

Shannon Entropy: H(X ) = log N − D(P(X )||U(X )), departure from
 
the uniform distribution.
 

Mutual Information: (X ; Y ) = D(P(X , Y )||P(X )P(Y ))
 

Let’s try to interpret EM in terms of KL divergence.
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EM Interpretation
 

P(Xi , Yi |θ)log P(θ) + E log 
P(Yi , Xi , θ̂(t)) 

P(Xi , Yi |θ)ˆ= log P(θ) − P(Yi |Xi , θ
(t)) log 

ˆP(Yi |Xi , θ(t)) 

P(Yi |Xi , θ)ˆ= log P(θ) + log P(Xi |θ) + P(Yi |Xi , θ
(t)) log 

P(Yi |Xi , θ̂(t)) 

P(Yi |Xi , θ̂
(t))ˆ≡ log P(θ, Xi ) − P(Yi |Xi , θ

(t)) × log 
P(Yi |Xi , θ) 

22

Quantifying Uncertainty 

∑ [ ]
∑ [ ]

∑ [ ]



Contd.
 

ˆ∴ Q(θ|θ̂(t)) = log P(θ|Xi ) − D(P(Yi |Xi , θ
(t))IP(Yi |Xi , θ))" v- ' 

KL-Divergence between estimates and
 
optimal conditional distributions
 

of missing data
 

D → 0 ⇒ Q(θ|θ̂(t)) → log P(θ|Xi ) (Recall, D ≥ 0) 
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Notes
 

1	 The M-step can produce any θ̂t+1 that improves Q, not just the 
maximum (at each iteration). That’s Generalized EM (GEM). 

2	 M can be simpler to formulate for an MLE problem, and easier to 
implement than gradient-based methods. A huge explosion of 
applications, as a result. 

In applications of mixture modeling, EM method is synonymous 
with density estimation. 

3	 Convergence can be slow, i.e. if you can do Newton-Raphson (for 
example), do it. 
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What does it converge to? 

Recall: D(PIQ) ≥ 0, D(PIP) = 0. D(QIQ) = 0
 

θ(t) ˆ
Q(θ|ˆ = log P(θ|Xi ) −D[P(Yi |Xi , θ
(t))IP(Yi |Xi , θ)] 

i 

∴ Q(θ̂(t)|θ̂(t)) = log P(θ̂(t)|Xi ) 
i 

Q(θ̂(t)|θ̂(t)) = log P(θ̂(t+1)|Xi ) −D[P(Yi |Xi , θ̂
(t))IP(Yi |Xi , θ̂

(t+1))] 
i 
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Q(θ̂(t+1)|θ̂(t)) ≥ Q(θ̂(t)|θ̂(t)) , by construction " ' " 'v- v-
Qt+1 Qt 

Qt+1 − Qt ≥ 0 

log P(θ̂(t+1)|Xi ) − log P(θ̂(t)|Xi ) ≥ D[P(Yi |Xi , θ̂
(t))IP(Yi |Xi , θ̂

(t+1)] 
i 

≥ 0 

Posterior improves ! 
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Stationary Points
 

dQ(θ|θ̂(t)) |t=∞ = 
dθ 

0 

ˆ∂ log P(θ|Xi ) ∂D[P(Yi |Xi , θ
(∞))IP(Yi |Xi , θ)]| θ̂(t) − | θ̂(∞)θ= θ=∂θ ∂θ 

i 

∂ log P(θ|Xi )⇒ | = 0θ̂(∞)θ=∂θ 
i 

A stationary point of a posterior. 
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Gaussian Mixture Model
 

N SN 
αsP(Xi |θs) × P(θs) //MAP 

i=1 s=1 

N S only MLE for now 
α ≡ log αsP(Xi |θs) + log P(θs) 

i=1 s=1 

N S 

≥ log[αsP(Xi |θs)] 
i=1 s=1 

How to solve? 
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Contd.
 

Suppose there is an indicator variable Yi,s
 

Yi,s ∈ {0, 1} and it is 1 when data Xi is drawn from distribution θs,
 
then “total” likelihood (including “missing” data Yi,s)
 

N S 

αTOT ≡ Yi,s log[αsP(Xi |θs)] 
i=1 s=1 

we have to add constraint j αj = 1, so ⎡ ⎤ ⎣ ⎦ = LLTOT + λ αj − 1 
j 
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Differentiating, we get:
 

∂L 
N Yi,s 

= + λ = 0 
∂αs αsi=1 

N 
i=1 Yi,s⇒ α̂s = −λ 

Because 

N
 

Yi,s + λαs = 0 ∀s
 
i=1
 

S N
 

∴ Yi,s + λαs = 0
 
s=1 i=1
 

−λ = NS S 
Nαs = 1, Yi,s = 1 ⇒∴ 

ˆ = i=1 Yi,s or αss=1 s=1 N 

⎧ ⎪⎨ ⎪⎩ 30
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And 
N 

θ̂s ≡ arg max Yi,s log(αsP(Xi |θs)) 
θs 

i=1 

No interaction between mixture elements given Yi,s! 
But we do not know Yi,s, we estimated it through 

(t) (t)ˆP(Yi,s|Xi , θ , α̂ )"s v- s ' 
Current 

estimates 
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Contd. 
(t)

We need to define: Q(θ, α|θ̂ , α̂(t)) 

(t)(t)
(t) α̂ P(Xi |θ̂ )(t)P(Yi,s|Xi , θ̂ , α̂s ) = wi,s = s s 
s (t)

α̂ P(Xi |θ̂ )
(t) 
rr r 

⎛ ⎞ 
N S 

αsP(Xi |θs)Q ≡ wi,s log + λ ⎝ αj − 1⎠ // wi,s lower bounds 
wi,si=1 s=1 j 

∂Q 
N wi,s 

= + λ = 0 
∂αs αsi=1 

N 
(t+1) i=1 wi,s⇒ α̂s = 

N 
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From exponential Family: 

Tlog P(Xi |θs) = log h(x) + θST (Xi ) − A(θs) // exponential family 

dQ N N dA 
= wi,sT (Xi ) − wj,sdθ dθsi=1 j=1 

NdA =1 wi,sT (Xi )i⇒ = 
dθs

N 
i=1 wi,s 
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So, 
NdA t+1 i=1 wi,sXi 

= 0 ⇒ µ̂ = 
dθ1	 

N 
i=1 wi,s 

NdA T ]t+1 i=1 wi,sXiXi
T 

= 0 ⇒ Σ̂t+1 + [µ̂µ̂ = 
dθ2	 

N 
i=1 wi,s 

Recall 
XiT (α1) = XiX T 

i 
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Example
 Example
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Convergence
 Convergence
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Model selection
 

How do we know how many members exist in the mixture? How
 
to estimate it?
 

What is the best model to pick?
 

mpirical: Bootstrap, Jacknife, Cross-validation.
 

Algorithmic: AICc, BIC, MDL, MML (there are others, e.g. SRM).
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Cross-Validation
 

You produce K sample sets, train on K-1, test on the remaining. 
Do this in turn. The simplest way to estimate parameter 
uncertainty, and produce somewhat robust result. 

For 2-way cross-validation, you get the classical “Train & Test” 
data sets. 
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Algorithmic Approach
 

P(χ|θ) is the true likelihood - of some “perfect” representation of 
the data. 

Q(χ|θn) is the approximate likelihood - of a model of the data. 
We want to figure out if Q is any good. 

If we knew P(χ|θ), we could calculate the KL-Divergence 

P(χ = x |θ)
D(P||Q) = P(χ = x |θ) log = H(P, Q) − H(P)

Q(χ = x |θ)
x 

So, we may minimize “cross-entrop” or maximize ? 

Ep[log Q(χ = x |θn)] 

Will this work? 
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Take 2
 

Let’s assume smoothness in Q and take a Taylor Expansion: 
.log Q(χ, θn) = L(χ, θn) 

L(χ, θn) = L(χ, θ̂n) + (θn − θ̂n)
T ∂L 

∂θ θ=θ0 
n 

1 
+ (θn − θ̂n)

T ∂
2L 

(θn − θ̂n)2 ∂θ2 
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An Information Criterion
 

−1 

Ep[L(χ, θn)] = Ep[L(χ, θ̂n)] − Ep 
1 
(θ0 − θ̂n)

T (θ0 − θ̂n)n n2

−1 

= Ep[L(χ, θ̂n)] − Ep 
1 

(θ0 − θ̂n)(θ
0 − θ̂n)

T 
n n2 

= Ep[L(χ, θ̂n)] − Tr 
1

In2

= Ep[L(χ, θ̂n)] − Tr 
1 

n
2

An unbiased estimate is : L(χ, θ̂n) − 1
2 n
 

Giving a criterion: −L(χ, θ̂n) + 2n, for which we seek minimum.
 

For Gaussian: N ln σ2 + 2n (N=number of samples, n=size of
 
model, e.g. number of mixtures)
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Akaike Information Criterion (AIC)
 

OK, but we don’t know Ep; so, we cross-validate. Let’s assume 
we have an independent data set from which we estimate 
parameters θ(x) n 

We write out the log-likelihood as ln P(·) = Ex ln Q(χ, θn 
(x)

) and 
evaluate Ep(ln P) = Ep(Ex (ln Q(χ, θ(x))))n 

This gives the AIC criterion: −2L(χ, θ̂n) + 2n 
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Others
 

N−
2
n
N 
−1 nAICc: Correction to AIC for small samples: −2L(χ, θ̂n) + 

BIC: −2L(χ, θ̂n) + n ln N 

There are other information theoretic criteria, not covered here: 
MDL (Minimum Description Length) and MML (Minimum 
Message Length) are both powerful. 

Model Selection is not a settled question! You should try multiple 
model selection criterion and evaluate. 
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 Example
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Zoomed
 Zoomed

45

Quantifying Uncertainty 



MIT OpenCourseWare
http://ocw.mit.edu

12.S990 Quantifying Uncertainty
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



