Quantifying Uncertainty

Sai Ravela

M. I. T

2012

Uncertainty Propagates in Time-Depdendent Processes

M: -Physical or Statistical Model

Uncertainty Propagates in Bayesian Networks

Found in Hierarchical Bayes, Graphical Models.

Uncertainty Propagates in Spatial Processes

Inference Problems

1. Two-point boundary value problems, incl. uncertainty estimation propagation. Fixed Point Smoother.
2. Recursive Bayesian Estimation for Sequential Filtering and Smoothing.
3. Nonlinearity and Dimensionality and Uncertainty: Ensemble Filter \& Smoother.

Inference Problems

1. Two-point boundary value problems, incl. uncertainty estimation propagation. Fixed Point Smoother.
2. Recursive Bayesian Estimation for Sequential Filtering and Smoothing.
3. Nonlinearity and Dimensionality and Uncertainty: Ensemble Filter \& Smoother.

Propagating Uncertainty, a first step.

Variational Inference

$$
\begin{array}{r}
J\left(\underline{x}_{0}\right):=\frac{1}{2}\left(\underline{x}_{0}-\underline{x}_{b}\right)^{\top} C_{00}^{-1}\left(\underline{x}_{0}-\underline{x}_{b}\right)+ \\
\sum_{i=1}^{m}\left\{\frac{1}{2}\left(\underline{y}_{i}-H \underline{x}_{i}\right)^{\top} R^{-1}\left(\underline{y}_{i}-H \underline{x}_{i}\right)+\underline{\lambda}_{i}^{T}\left[\underline{x}_{i}-M\left(x_{i-1} ; \underline{\alpha}\right)\right]\right\}
\end{array}
$$

Cannot deal with stochastic model (i.e. model error). Needs a Bayesian formalism.

Filters and Smoothers

Sequential Filtering:

$$
\begin{align*}
P\left(\underline{x}_{n} \mid \underline{y}_{1} \cdots \underline{y}_{n}\right) & \propto P\left(\underline{y}_{n} \mid \underline{x}_{n}\right) \quad P\left(\underline{x}_{n} \mid \underline{x}_{n-1}\right) P\left(\underline{x}_{n-1} \mid \underline{y}_{1} \ldots \underline{y}_{n-1}\right)(1) \\
& =P\left(\underline{y}_{n} \mid \underline{x}_{n}\right) P\left(\underline{x}_{n} \mid \underline{y}_{1} \ldots \underline{y}_{n-1}\right) \tag{2}\\
& =P\left(\underline{y}_{n} \mid \underline{x}_{n}\right) P\left(\underline{x}_{n}^{f}\right) \tag{3}
\end{align*}
$$

The recursive form is simple when a perfect model is assumed, but
the Kolmogorov-Chapman equation has to be used in the presence of model error. $P\left(\underline{x}_{n} \mid \underline{y}_{1} \ldots \underline{y}_{n-1}\right)$ is the forecast distribution or prior distribution also seen as $P\left(\underline{x}_{n}^{f}\right)$

Write the Objective

Sequential Filtering:

$$
\begin{align*}
J\left(\underline{x}_{n}\right):= & \frac{1}{2}\left(\underline{x}_{n}-\underline{x}_{n}^{f}\right)^{T} P_{f}^{-1}\left(\underline{x}_{n}-\underline{x}_{n}^{f}\right)+ \\
& \frac{1}{2}\left(\underline{y}_{n}-H \underline{x}_{n}\right)^{T} R^{-1}\left(\underline{y}_{n}-H \underline{x}_{n}\right) \tag{4}
\end{align*}
$$

We have assumed a linear observation operator $\underline{y}_{n}=H \underline{x}_{n}+\underline{\eta}$, with $\eta \sim N(0, R)$.

Find the Stationary Point

Sequential Filtering:

$$
\begin{align*}
\hat{\underline{x}}_{n} & =\underline{x}_{n}^{f}+P_{f} H^{T}\left(H P_{f} H^{T}+R\right)^{-1}\left(\underline{y}_{n}-H \underline{x}_{n}^{f}\right) \tag{5}\\
& =\underline{x}^{a} \tag{6}\\
P_{a} & =\left(H^{T} R^{-1} H+P_{f}^{-1}\right)^{-1} \tag{7}\\
& =P_{f}-P_{f} H^{T}\left(H P_{f} H^{T}+R\right)^{-1} H P_{f} \tag{8}
\end{align*}
$$

Then, launch a new prediction $\underline{x}_{n+1}^{f}=M\left(\underline{x}_{n}\right)$ and the new uncertainty (predicted) is $P_{f}=L P_{a} L^{T}$, where $L=\frac{\partial M}{\partial \underline{x}_{n}}$ when the model is
nonlinear. Propagating produces the moments of $P\left(\underline{x}_{n+1} \mid \underline{y}_{1} \ldots \underline{y}_{n}\right)$.

Smoother

We are interested in the state estimates at all points in an interval, that is:

$$
\begin{equation*}
P\left(\underline{x}_{1} \ldots \underline{x}_{n} \mid \underline{y}_{1} \ldots \underline{y}_{n}\right) \tag{9}
\end{equation*}
$$

The joint distribution can account for model errors, state and parameter errors within its framework. We break it down via Bayes Rule, Conditional Independence and Markov assumption, and marginalization and perfect modelassumption, leading to a coupled set of equations that are recursively solved.

Uncertainty Propagation is Expensive

Forward(you'll need this in the end)

$$
C_{i i}=\frac{\partial M}{\partial x_{i-1}} C_{i-1 i-1} \frac{\partial M^{T}}{\partial x_{i-1}} 0<i \leq m
$$

Backward via information form:

$$
\begin{aligned}
\hat{l}_{m m} & =H^{\top} R^{-1} H \\
\hat{l}_{i i} & =\frac{\partial M^{\top}}{\partial x_{i}} l_{i+1 i+1} \frac{\partial M}{\partial x_{i}}+H^{\top} R^{-1} H \\
\hat{C}_{00} & =\left[C_{00}^{-1}+\frac{\partial M^{\top}}{\partial x_{0}} \hat{l}_{1} \frac{\partial M}{\partial x_{0}}\right]^{-1}
\end{aligned}
$$

The Dimensionality and Nonlinearity Challenges

Monte-Carlo

- Reduced-rank approximation
- Particle Filter

Domain Decomposition

- Localization, Localized Filters
- Scale-recursive Spatial Inference

Model Reduction \& Interpolation

- Snapshots \& POD
- Krylov Subspace

Response Surface Models

- Deterministic Equivalent Modeling Method
- Stochastic Response Surface Methodology

Polynomial Chaos Expansions

- Generalized Polynomial Chaos

Monte-Carlo

Filter-Updating

$$
\begin{aligned}
& A^{t}=\left[\underline{x}_{1}^{f} \ldots \underline{x}_{s}^{f}\right] \Rightarrow \text { All at time } T \\
& \tilde{A}^{t}=\left[\tilde{x}_{1}^{f} \ldots \tilde{\tilde{x}}_{s}^{t}\right]
\end{aligned}
$$

NOTE THAT

$$
P^{f}=\frac{1}{s-1} \tilde{A}^{f} \tilde{A}^{f T} \Leftarrow \text { Uncertainty }
$$

So, propagate uncertainty through Samples "Integrated" forward. Model is not linearized.

No Linearization

$$
\begin{aligned}
\underline{y} & =h(\underline{x})+\underline{\eta}, \quad \underline{\eta} \sim N(0, R) \\
Z & =\left[\underline{y}+\underline{\eta}_{1}, \ldots, \underline{y}+\underline{\eta}_{s}\right] \leftarrow \text { Perturbed Observations } \\
R & \approx \frac{1}{s-1} \tilde{Z} \cdot \tilde{Z}^{T}
\end{aligned}
$$

Also, let

$$
\Omega^{f}=h\left(A^{f}\right)=\left[h\left(\underline{x}_{1}^{f}\right) \ldots h\left(\underline{x}_{s}^{f}\right)\right]
$$

$\tilde{\Omega}^{f}$ defined similarly

Uncorrelated Noise

Note

$$
\left(\tilde{\Omega}^{f}+\tilde{Z}\right)\left(\tilde{\Omega}^{f T}+\tilde{Z}^{T}\right)=\left(\tilde{\Omega}^{f} \tilde{\Omega}^{f T}+\tilde{Z} \tilde{Z}^{T}\right)
$$

When observation noise is uncorrelated with state \equiv an assumption
Let
\underline{x}^{a} be the estimate, analysis, 'posterior' rv. \bar{A}^{a} and \tilde{A}^{a} similarly, defined.

Easy Formulation

$$
A^{a}=A^{f}+\tilde{A}^{f} \tilde{\Omega}^{f T}\left[\tilde{\Omega}^{f} \tilde{\Omega}^{f T}+\tilde{Z} \tilde{Z}^{T}\right]^{-1}\left[Z-\Omega^{f}\right]
$$

Identical to KF/EKF in linear/linearized case
\Rightarrow No linearization of the model
\Rightarrow No explicit uncertainty (covariance) propagation

$$
\begin{aligned}
{\left[\tilde{\Omega}^{f} \tilde{\Omega}^{T T}+\tilde{Z} \tilde{Z}^{T}\right]^{-1} } & =\left(\left[\tilde{\Omega}^{f}+\tilde{Z}\right]\left[\tilde{\Omega}^{T T}+\tilde{Z}^{T}\right]\right)^{-1} \\
& =\left(C C^{T}\right)^{-1}
\end{aligned}
$$

Solution

Let

$$
\begin{aligned}
C= & {\left[\begin{array}{lll}
U & S & V^{T}
\end{array}\right] } \\
{\left[C C^{T}\right]^{-1} } & =U S^{-2} U^{T} \\
& =\left(U S^{-1}\right)\left(U S^{-1}\right)^{T} \\
& =\sqrt{D} \sqrt{D}^{T} \\
& =D
\end{aligned}
$$

Fast Calculation

$$
\begin{gathered}
A^{a}=A^{f}+\tilde{A}^{f} \tilde{\Omega}^{f T}\left[U S^{-2} U^{T}\right]\left[Z-\Omega^{f}\right] \\
(n, s)(n, s)(n, s)(s, n)(n, s)(s, s)(s, n)(n, s)(n, s)
\end{gathered}
$$

Return by right to left, multiply; FAST, low-dimensional

$$
\begin{aligned}
A^{a} & =A^{f}+\tilde{A}^{f} X_{5} \\
& =A^{f}\left(I_{s}+X_{4}\right) \\
& =A^{f} X_{5}
\end{aligned}
$$

A "weakly" nonlinear transformation $\left(X_{5} \equiv X_{5}\left(A^{f}\right)\right)$

Time Dependent Example

Lorentz

$$
\begin{aligned}
\dot{x} & =-x_{i-2} x_{i-1}+x_{i-1} x_{i+1}-x_{i}+u \\
& =\underbrace{x_{i-1}\left[x_{i+1}-x_{i-2}\right]}_{\text {Advective }}-\underbrace{x_{i}}_{\text {Dissipative }}+\underbrace{u}_{\text {Forcing }}
\end{aligned}
$$

Chaotic

Filter

Need to Get multimedia WORKING

Play ENKFLP.wmv!

Chalk Talk: Method 2.
Demo: Matlab.
Demo: PI Bottle.

Plug and Play

So,

$$
\begin{aligned}
A_{0}^{a} & =A_{0}^{f} I_{s} \leftarrow \text { No measurement } \\
A_{1}^{a} & =A_{1}^{f} X 5_{1} \leftarrow \text { Filter, same as } X_{5} \\
A_{1}^{s} & =A_{1}^{a} I_{s} \leftarrow \text { No future measurement } \\
A_{0}^{s} & =A_{0}^{a}+\tilde{A}_{0}^{a} \tilde{\Omega}_{1}^{f T}\left[U_{1} S_{1}^{-2} U_{1}^{T}\right]\left[Z_{1}-\Omega_{1}^{f}\right] \\
& =A_{0}^{a} X 5_{1}
\end{aligned}
$$

Note: $X 5$ here is same as X_{5} in earlier slide.

Send me a message

On the graph

Message sent from \underline{x}_{1} to $\underline{x}_{0}\left(X 5_{1}\right)$
\underline{x}_{0} smoothed by \underline{y}_{1} i.e $A_{0}^{s} \sim \operatorname{Pr}\left(\underline{x}_{0} \mid \underline{y}_{1}\right)$

Fixed Interval \& Fixed Lag

Fixed Interval

$$
\begin{aligned}
& \left.\begin{array}{l}
P\left(\underline{x}_{0} \mid \underline{y}_{1} \cdots \underline{y}_{n}\right) \\
P\left(\underline{x}_{1} \mid \underline{y}_{1} \cdots \bar{Y}_{n}\right) \\
\vdots
\end{array}\right\} \text { Smoother } \\
& P\left(\underline{x}_{n} \mid \underline{y}_{1} \cdots \underline{y}_{n}\right) \leftarrow \text { Filter }
\end{aligned}
$$

Fixed Interval \& Fixed Lag

Fixed Lag

Smothed up to a "window"

Fixed Interval: The Dumb Way

Graphical Model of Interval Smoothing

(V1)

Backward Recursion

Key Assumption: Jointly Gaussian Distributions.

$$
\begin{aligned}
& A_{k}^{s}=A_{k}^{a} \prod_{j=k+1}^{N} x 5_{j} \\
& C_{k}=\prod_{j=k+1}^{N} x 5_{j}=x 5_{k+1} C_{k+1}
\end{aligned}
$$

Fixed Interval: The New Normal

(FBF)

Fixed Interval on Lorenz

Costs of Inference, Toy Problem

Fixed Lag

Fixed Lag Smoother

V1-lag \& FIFO-lag

Fixed Lag: The Dumb Way

Fixed Lag is FIFO

$$
\begin{aligned}
A_{k}^{s} & =A_{k}^{a} \prod_{j=k+1}^{k+w} X 5_{j} \\
& =A_{k}^{a} C_{k} \\
C_{k} & =X 5_{k}^{-1} C_{k-1} X 5_{k+w}
\end{aligned}
$$

Fixed Lag: The New Normal

We need to fix the multimedia!

Watch FLKSO.wmv!
Reading: Ravela and McLaughlin, Fast Ensemble Smoothing, Ocean Dynamics, 2007
Schneider 2001: Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values, Journal of Climate

Where does ensemble come from?

singular vectors

Low dimensional
Subspace Span $\left\{\underline{u}^{(0)} \ldots \underline{u}^{(N)}\right\}$

$$
\left.\underline{u}_{0}^{(0)} \rightarrow L_{0} \approx \frac{\partial M}{\partial x}\right|_{x=x_{0}} \rightarrow \underline{u}_{1}^{(0)}
$$

Things get tough... the Tough linearize

Thus

$$
\begin{aligned}
\underline{x}_{1} & =M\left(\underline{x}_{0}\right) \\
& =M\left(\underline{\bar{x}}_{0}+\underline{\tilde{x}}_{0}\right) \\
& =M\left(\underline{\bar{x}}_{0}\right)+\left.\frac{\partial M}{\partial \underline{x}}\right|_{x=\underline{\bar{x}}_{0}}{\tilde{\tilde{x}_{0}}}^{\tilde{x}_{1}}
\end{aligned}=\mathcal{L} \tilde{x}_{0} .
$$

Eigenvalue Problem

Now,let C_{1} be a metric on vector \underline{u}_{1} and let C_{0} be a metric on \underline{u}_{0}

$$
\lambda=\frac{\left.<\mathcal{L} \underline{u}_{0}, C_{1} \mathcal{L} \underline{u}_{0}\right\rangle}{\left\langle\underline{u}_{0}, C_{0} \underline{u}_{0}>\right.}=\frac{\left.<\underline{u}_{0}, \mathcal{L}^{\#} C_{1} \mathcal{L} \underline{u}_{0}\right\rangle}{<\underline{u}_{0}, C_{0} \underline{u}_{0}>}
$$

Maximize ratio for the $k^{\text {th }}$ perturbation: λ_{k} :

$$
\Rightarrow \mathcal{L}^{\#} C_{1} \mathcal{L} \underline{u}_{0}^{(k)}=\lambda_{k} C_{0} \underline{u}_{0}^{(k)}
$$

Which is a generalized eigenvalue problem. Note that when $C_{1}=I$, and $C_{0}=P_{0}^{f}$ then $\underline{u}_{1}^{(k)}$ are leading directions of P_{1}^{f}

SV aproach

Notes

- Adjoint \& TLM not easy to calculate but robust.
- \mathcal{L} may be really large too! How can we reduce \mathcal{L} ?
- Sensitivity to norm.

Breeding

Initial
Perturbation

Align with leading directions of error growth (Lyapunov vectors)

$$
\underbrace{Q_{i+1} R_{i+1}}_{\text {Q R decomposition }}=\underbrace{\mathcal{L}}_{T L M} Q_{i}
$$

$$
Q_{0} \equiv I \quad Q_{0} \rightarrow Q_{i} \cdots \underbrace{Q_{k}}_{\text {forgets } Q_{0}}
$$

It's easy to breed

1. Generate "random" initial perturbation
2. Let it grow; renormalize. (i.e propagate it)
3. Repeat
\Rightarrow Breeding vectors
How many bred vectors?
\Rightarrow Size of L ?

Ways to simplify Models for Uncertainty Propagation

1. Spectral Truncation: Find a few leading directions of Covariance or Model and propagate them. Breed Vectors. Calculate a reduced local linear model from ensemble.
2. Localization: Localize filtering and smoothing, use scale-recursive decomposition.
3. Model Reduction: Reduce order of linearized model, construct a reduced model from snapshots.
4. Sample Input-Output pairs to create a simple auxiliary model.

Model Reduction

Model Bypass - Non-Intrusive Approaches

Extra-Special on Covariance Representations

If we have a large covariance matrix C nonetheless representable by computer and if we know it is a block-circulant matrix, then the Fourier Transform can be used to diagonalize it:

$$
\begin{equation*}
D=U C U^{T} \tag{10}
\end{equation*}
$$

For the unitary transform U, and D is diagonal. So, subsequent processing with covariance is simplified, provided the model and state can be also expressed in fourier domain.

$$
\begin{align*}
U \delta x_{n+1} & =U \frac{\partial M}{\partial x} U^{T} U x_{n} \tag{11}\\
\delta \xi_{n+1} & =\mathcal{L}_{\mathcal{F}} \delta \xi_{n} \tag{12}\\
\delta x_{n}^{T} C_{n}^{-1} \delta x_{n} & =\delta \xi^{T} D_{n}^{-1} \delta \xi \tag{13}
\end{align*}
$$

Spectral truncation to a few wave numbers in U also leads to a reduced order model. Incidentally, similar process for wavelet decomposition.

Iterative calculation

If a covariance C has eigen vectors U and eigenvalues λ, i.e.
$C U=U \wedge$, then we may recursively calucate the leading modes in U because:

$$
\begin{equation*}
C=\sum_{k=1}^{N} \underline{u}_{k} \lambda_{k k} \underline{u}_{k}^{T} \tag{14}
\end{equation*}
$$

Where $U=\left[\underline{u}_{1} \ldots \underline{u}_{N}\right]$ and $\Lambda=\operatorname{diag}\left(\lambda_{11}, \ldots, \lambda_{N N}\right)$, in decreasing order. Let $C_{11}=C$, and iteratively calculate:

$$
\begin{align*}
\text { for } k & =1 \ldots N \tag{15}\\
\left\{\underline{u}_{k}, \lambda_{k k}\right\} & =\operatorname{LeadingEig}\left(C_{k k}\right) \tag{16}\\
C_{k+1 k+1} & =C_{k k}-\underline{u}_{k} \lambda_{k k} \underline{u}_{k}^{T} \tag{17}
\end{align*}
$$

We need a procedure to calculate the leading Eigenvector and Eigenvalue.

Basic approach: Power Iteration

WARNING: There are many advanced methods for calculating eigen vectors and eigen values iteratively and one should use them (e.g. from ARPACK). Here, we provide an intuition for the process.
To calculate the leading vector of C, let us consider a vector in the basis \underline{z}, which we may expand as:

$$
\begin{equation*}
\underline{z}=\sum_{k=1}^{N} c_{k} \underline{u}_{k} \tag{19}
\end{equation*}
$$

Now, we can write for the $n^{\text {th }}$ power of C :

$$
\begin{align*}
C^{n} \underline{\boldsymbol{z}} & =\sum_{k=1}^{N} c_{k} C^{n} \underline{u}_{k} \tag{20}\\
& =\sum_{k=1}^{N} c_{k} \lambda_{k k}^{n} \underline{u}_{k} \tag{21}
\end{align*}
$$

HOW?

Power Iteration Continued

$$
\begin{equation*}
C^{n} \underline{z}=c_{1} \lambda_{11}^{n}\left(\underline{u}_{1}+\sum_{k=2}^{N} \frac{c_{k}}{c_{1}} \frac{\lambda_{k k}^{n}}{\lambda_{11}^{n}} \underline{u}_{k}\right) \tag{22}
\end{equation*}
$$

Defining $\underline{z}_{n}=C^{n} \underline{z}$, we note that

$$
\begin{equation*}
n \rightarrow \infty \Rightarrow \frac{\underline{z}_{n}}{\left\|\underline{z}_{n}\right\|} \rightarrow \underline{u}_{1} \tag{23}
\end{equation*}
$$

Algorithm Powerlteration(C):
Initialize $\underline{z} ; \underline{z} \leftarrow \frac{z}{\|\underline{z}\|}$
Iterate: $t \leftarrow C z, z \leftarrow \frac{t}{\|\underline{t}\|}$

LeadingEig(C)

$$
\begin{aligned}
\underline{u}= & \text { Powerlteration }(C) \\
\lambda= & u^{T} C u \\
\operatorname{return}(\underline{u}, \lambda) & \text { end }
\end{aligned}
$$(26)

But the Covariance is too LARGE!

- The preceding discussion is all fine, but often the dimensionality is such that we have a really large covariance that cannot be represented. Fortunately, many physical problems have only a few modes of interest which we represent through data, e.g. an ensemble.
- So we begin with a skinny matrix X, and assume the covariance is $C=X X^{\top}$. We would like a representation without explicitly calculating C and exploiting the rank-deficiency due to a skinny X.

Alternate form

- Let $X=U S V^{\top}$ be the singular value decomposition and here $S_{i i} \geq S_{i+1 i+1}$. Then $C=U \wedge U^{T}$ where $\Lambda=S^{2}$
- We will calculate only a few top left and right singular vectors and singular values iteratively for a reduced order representation $C_{d}=U_{d} \wedge_{d} U_{d}^{\top}$.
- Note that because X is skinny, i.e. it is of size $n \times N$ with $N \ll n$. We may further only pick d modes, $d \leq N$.
- We would like a representation of C_{d} without explicitly calculating it.
- Notice that $D=X^{\top} X$ is a small matrix when X is skinny.

Alternate form

- Let $X=U S V^{\top}$ be the singular value decomposition and here $S_{i i} \geq S_{i+1 i+1}$. Then $D=X^{\top} X=V \wedge V^{\top}$ where $\Lambda=S^{2}$, a small matrix.
- We calculate the eigen vectors and eigen values of D recursively. Let $D_{1}=D$; and for $k=1 \ldots d$

$$
\begin{align*}
\underline{v}_{k} & =\text { Powerlteration }\left(D_{k}\right) \tag{27}\\
\lambda_{k k} & =\underline{v}_{k}^{T} D_{k} \underline{v}_{k} \tag{28}\\
D_{k+1} & =D_{k}-\underline{v}_{k} \lambda_{k k} \underline{v}_{k}^{T} \tag{29}
\end{align*}
$$

Noting that $S_{d}=\sqrt{\Lambda_{d}}$, we obtain U_{d} as a skinny $n x d$ matrix:

$$
\begin{equation*}
U_{d}=X V_{d} S_{d}^{-1} \tag{30}
\end{equation*}
$$

Store U_{d} and Λ_{d} and use them to calculate the norm in an application. DEMO IN MATLAB

Applicable to Processes

$$
\begin{aligned}
& \frac{\partial \theta}{\partial t}(x, t)=F \theta(x, t) \rightarrow \text { System } \\
& R(\theta)=\frac{\partial \theta}{\partial t}-F \theta \rightarrow \text { Residual } \\
& \theta=u \eta(t) \rightarrow \text { KLT (POD or Krylov) } \\
& u^{T} R=0 \rightarrow \text { Galerkin Projection } \\
& \frac{\partial \eta}{\partial t}=u^{T} F u \eta \rightarrow R O M
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

12.S990 Quantifying Uncertainty

Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

