
Ensemble Filter and Smoother

Quantifying Uncertainty

Sai Ravela

M. I. T

2012

1

Quantifying Uncertainty

Ensemble Filter and Smoother

Uncertainty Propagates in Time-Depdendent
Processes

X f 0 X f 1 X f 2 X f n

M ≡ M(xn; αn)

xn+1 = M(xn; αn) + ωn

M: -Physical or Statistical Model

2

Quantifying Uncertainty

Ensemble Filter and Smoother

Uncertainty Propagates in Bayesian Networks

P R

T

Q

F

L

Found in Hierarchical Bayes, Graphical Models.

3

Quantifying Uncertainty

Ensemble Filter and Smoother

Uncertainty Propagates in Spatial Processes

?

Grid nodes

Interactions

4

Quantifying Uncertainty

Ensemble Filter and Smoother

Inference Problems

1.	 Two-point boundary value problems, incl. uncertainty estimation
propagation. Fixed Point Smoother.

2.	 Recursive Bayesian Estimation for Sequential Filtering and
Smoothing.

3.	 Nonlinearity and Dimensionality and Uncertainty: Ensemble
Filter & Smoother.

5

Quantifying Uncertainty

Ensemble Filter and Smoother

Inference Problems

1.	 Two-point boundary value problems, incl. uncertainty estimation
propagation. Fixed Point Smoother.

2.	 Recursive Bayesian Estimation for Sequential Filtering and

Smoothing.

3.	 Nonlinearity and Dimensionality and Uncertainty: Ensemble

Filter & Smoother.

Propagating Uncertainty, a first step.

6

Quantifying Uncertainty

�

Ensemble Filter and Smoother

Variational Inference

1
(x0 − xb)

T C−1J(x0) := 00 (x0 − xb)+2
m � �

T1
(y − Hxi)

T R−1(y − Hxi) + λi [xi − M(xi−1; α)]i i2
i=1

Cannot deal with stochastic model (i.e. model error). Needs a
Bayesian formalism.

7

Quantifying Uncertainty

�

Ensemble Filter and Smoother

Filters and Smoothers

Sequential Filtering:

P(xn|y . . . y) ∝ P(y |xn) P(xn|xn−1)P(xn−1|y . . . y)(1)
1 n n 1 n−1

xn−1

= P(y |xn)P(xn|y . . . y) (2)
n 1 n−1

f = P(y |xn)P(x) (3)nn

The recursive form is simple when a perfect model is assumed, but

the Kolmogorov-Chapman equation has to be used in the presence of
model error. P(xn|y . . . y) is the forecast distribution or prior

1 n−1
distribution also seen as P(xf)n

8

Quantifying Uncertainty

Ensemble Filter and Smoother

Write the Objective

Sequential Filtering:

1 f)T P−1 fJ(xn) := (xn − xn f (xn − xn) +
2

1
(y − Hxn)

T R−1(y − Hxn) (4)

n n

We have assumed a linear observation operator y = Hxn + η, with

2

n
η ∼ N(0, R).

9

Quantifying Uncertainty

Ensemble Filter and Smoother

Find the Stationary Point

Sequential Filtering:

fx̂ n = xn + Pf HT (HPf HT + R)−1(y − Hxf
n) (5)

n
a = x (6)

= (HT R−1H + P−1)−1 (7)Pa f

= Pf − Pf HT (HPf HT + R)−1HPf (8)

Then, launch a new prediction xf = M(xn) and the new uncertainty n+1
∂M(predicted) is Pf = LPaLT , where L = when the model is ∂xn

nonlinear. Propagating produces the moments of P(xn+1|y . . . y).
1 n

10

Quantifying Uncertainty

Ensemble Filter and Smoother

Smoother

We are interested in the state estimates at all points in an interval,
that is:

P(x1 . . . xn|y . . . y) (9)
1 n

The joint distribution can account for model errors, state and
parameter errors within its framework.
We break it down via Bayes Rule, Conditional Independence and
Markov assumption, and marginalization and perfect
modelassumption, leading to a coupled set of equations that are
recursively solved.

11

Quantifying Uncertainty

Ensemble Filter and Smoother

Uncertainty Propagation is Expensive

Forward(you’ll need this in the end)

∂M ∂MT

Cii = Ci−1i−1 0 < i ≤ m
∂xi−1 ∂xi−1

Backward via information form:

ˆ = HT R−1HImm

∂MT ∂M
Îii = Ii+1i+1 + HT R−1H

∂xi ∂xi � �−1
∂MT ∂Mˆ C−1 ˆC00 = 00 + I11
∂x0 ∂x0

12

Quantifying Uncertainty

Ensemble Filter and Smoother

The Dimensionality and Nonlinearity Challenges
Monte-Carlo

� Reduced-rank approximation

� Particle Filter

Domain Decomposition

� Localization, Localized Filters

� Scale-recursive Spatial Inference

Model Reduction & Interpolation

� Snapshots & POD

� Krylov Subspace

Response Surface Models

� Deterministic Equivalent Modeling Method

� Stochastic Response Surface Methodology

Polynomial Chaos Expansions

� Generalized Polynomial Chaos
13

Quantifying Uncertainty

Ensemble Filter and Smoother

Monte-Carlo

••
• •

•
• • •

•
•

•
•
•

•

•• •
•

•

Isotropic
Initial Perturbation

Leading
Lyapunov time
vectors

14

Quantifying Uncertainty

Ensemble Filter and Smoother

Filter-Updating

f fAf = [x1 . . . x] ⇒ All at time T s
f fÃf = [˜1 .x . . ˜]xs

NOTE THAT
Pf =

1
Ãf ÃfT ⇐ Uncertainty

s − 1
So, propagate uncertainty through Samples “Integrated” forward.
Model is not linearized.

15

Quantifying Uncertainty

Ensemble Filter and Smoother

No Linearization

y = h(x) + η, η ∼ N(0, R)

Z = [y + η
1
, . . . , y + η] ← Perturbed Observations

s

1 ˜ Z̃ TR ≈ Z ·
s − 1

Also, let
f fΩf = h(Af) = [h(x1) . . . h(x)]s

Ω̃f defined similarly

16

Quantifying Uncertainty

Ensemble Filter and Smoother

Uncorrelated Noise

Note

ΩfT Ωf Ω̃fT(Ω̃f + Z̃)(˜ + Z̃ T) = (˜ + Z̃ Z̃ T)

When observation noise is uncorrelated with state ≡ an assumption

Let
xa be the estimate, analysis, ‘posterior’ rv.
Aa and Ãa similarly, defined.

17

Quantifying Uncertainty

Ensemble Filter and Smoother

Easy Formulation

 −1
Aa = Af + Ãf Ω̃fT Ω̃f Ω̃fT + Z̃ Z̃ T Z − Ωf

Identical to KF/EKF in linear/linearized case
⇒ No linearization of the model
⇒ No explicit uncertainty (covariance) propagation −1 −1

˜ ΩfT ΩfTΩf ˜ + Z̃ Z̃ T = [Ω̃f + Z̃][˜ + Z̃ T]

= (CCT)−1

18

Quantifying Uncertainty

Ensemble Filter and Smoother

Solution

Let
C = [U S V T]

[CCT]−1 = US−2UT

= (US−1)(US−1)T

√ √ T
= D D

= D

19

Quantifying Uncertainty

Ensemble Filter and Smoother

Fast Calculation

Aa = Af + Ãf Ω̃fT [US−2UT][Z − Ωf]
(n, s) (n, s) (n, s)(s, n)(n, s)(s, s)(s, n)(n, s) (n, s)

Return by right to left, multiply; FAST, low-dimensional

Aa =Af + Ãf X5

=Af (Is + X4)

=Af X5

A “weakly” nonlinear transformation (X5 ≡ X5(Af))

20

Quantifying Uncertainty

Ensemble Filter and Smoother

Time Dependent Example

Lorentz

ẋ = −xi−2xi−1 + xi−1xi+1 − xi + u

= xi−1[xi+1 − xi−2]− xi + u U U U
Advective Dissipative Forcing

Filter

Chaotic

21

Quantifying Uncertainty

Ensemble Filter and Smoother

Need to Get multimedia WORKING

Play ENKFLP.wmv!

Chalk Talk: Method 2.

Demo: Matlab.

Demo: PI Bottle.

22

Quantifying Uncertainty

Ensemble Filter and Smoother

Plug and Play

So,

••
•
• •• •

•
•

y
1

x0 x1

Aa
0 = Af

0Is ← No measurement

Aa = Af
1X 51 ← Filter, same as X51

As
1 = Aa

1Is ← No future measurement

ΩfTAs = Aa
0 + Ãa ˜

1 [U1S−2U1
T][Z1 − Ωf

1]0 0 1

= Aa
0X 51

Note: X 5 here is same as X5 in earlier slide.
23

Quantifying Uncertainty

Ensemble Filter and Smoother

Send me a message

On the graph

x0 x1

y
1

X 51

Message sent from x1 to x0(X 51)
x0 smoothed by y i.e As

0 ∼ Pr(x0|y)
1 1

24

Quantifying Uncertainty

Ensemble Filter and Smoother

Fixed Interval & Fixed Lag

Fixed Interval
Y1 Yn−1 Yn

x0 x1 x2 x3 xn−1 xn

P(x0|y · · · y)
1 n

P(x1|y1
· · · Yn) Smoother

. . .

P(xn|y · · · y) ← Filter
1 n

⎫ ⎪⎬ ⎪⎭

25

Quantifying Uncertainty

Ensemble Filter and Smoother

Fixed Interval & Fixed Lag

Fixed Lag
Y1 Yn−1 Yn

x0 x1 x2 x3 xn−1 xn

Y1 Yn−1 Yn

x0 x1 x2 x3 xn−1 xn

) ∼P(x0|y . . . y = P(x0|y . . . y), (L < n)
1 n 1 L

P(xi |Y0 . . . y)
i+L

Smothed up to a “window” 26

Quantifying Uncertainty

Ensemble Filter and Smoother

Fixed Interval: The Dumb Way

Fixed Interval: The Dumb Way

27

Quantifying Uncertainty

Ensemble Filter and Smoother

Backward Recursion

Key Assumption: Jointly Gaussian Distributions.

NN
As = Aa X 5jk k

j=k+1

N
N
Ck = X 5j = X 5k+1Ck+1

j=k+1

28

Quantifying Uncertainty

Ensemble Filter and Smoother

Fixed Interval: The New Normal
 Fixed Interval: The New Normal

29

Quantifying Uncertainty

Ensemble Filter and Smoother

Fixed Interval on Lorenz
 Fixed Interval On Lorenz

Lorenz-95 system (Lorenz and Emanuel 1998). The
continuous time Lorenz equations are:

dxi
dt

¼ "xi"2xi"1 þ xi"1xiþ1 " xi þ u; (30)

where i=1, ... n is cyclical (i.e. x0=xn, x−1=xn−1, xn+1=x1)
and can be interpreted as a surrogate spatial index. The
constant forcing term is u=8 in all simulations and
integrated forward using a fourth-order Runge–Kutta
scheme (Press et al. 1988).

For identical-twin experiments, a state vector of dimen-
sion n=100 is generated from a random zero-mean
Gaussian initial condition with a standard deviation of
2.0. The system is integrated for 8,192 steps to remove
transients, thence marking the true initial condition at the
beginning of the smoothing interval (t=0). The system is
integrated further until t=T and synthetic observations are
generated at specified measurement times by adding
uncorrelated zero-mean Gaussian noise with a standard
deviation of 0.2. A first guess of the true state at t=0 is
obtained by perturbing the true initial state vector by
uncorrelated zero-mean Gaussian with standard deviation
2.0. Then an ensemble of 100 random initial condition
samples is obtained by perturbing the first guess with 100
vectors of uncorrelated zero-mean Gaussian random
variables with a standard deviation of 1.0. The smoothing
algorithms in our experiments generate estimates at every
time step.

In the first experiment the system is integrated in the
interval [0, 1] with a dimensionless time step Δt=0.01,
giving M=100. The observation step is 0.05, giving r=5.
The state is observed at every other location so m=n/2=50.
Smoothed analyses are produced at every model time step,
therefore S=100 (the last time step cannot be smoothed),
and T=[0, 1, 2,..., 99]. Lorenz and Emanuel (1998)
associate the dimensionless time step 0.01 with a real time
of 1.2 h, implying that our measurement interval
corresponds to 6 h and our fixed-interval smoothing
window is 120 h. Figure 1 compares the estimation error
(over all states) obtained from an ensemble Kalman filter

(Evensen 2004) with those obtained from the V1 and FBF
ensemble smoothing algorithms. The error in each state is
the difference between the estimate (smoothed analysis
ensemble mean) and the known true values. V1 and FBF
are expected to have, and give, the same errors, which are
smaller than the ensemble filter errors at all times except
the endpoints.

Our second experiment uses the same inputs as the first
but considers the two fixed-lag smoothers. Figure 2
compares the root-mean-squared errors obtained from
V1-lag and FIFO-lag for fixed lag lengths of L=1, 5, 9,
and 13 measurements, corresponding to W=5, 25, 45 and
65 model time steps. In every case, the FIFO-lag and V1-
lag estimates and errors are the same, though some
variation could be expected in principle, due to the
numerical inversion in the FIFO-lag implementation.

We now turn to the computational performance of the
four smoothing algorithms. The unit costs defined earlier
can be written as Cu=nN

2, Cx=N
3 and Cx6∼3N3. Here, n is

the state size and N is the ensemble size (see Table 1 for a
list of symbols). The incremental costs of the four
algorithms are then: ΔCV1=nN

2sR(R+1)/2, ΔCFBF=
R(N3+snN2), ΔCV1-lag=LR sn N2 and ΔCFIFO−lag=
R(3N3+snN2). Please recall that R is the number of
observations over the interval, L is the lag length in
number of observations, and s is the ratio of the number of
smoothing analysis times to the number of observations on
the interval. We verify the complexity computations on the
Lorenz system, with n=100 and N=100. States are
completely observed at every time step so m=n and r=1.
Analyses are also produced at every model time step,
so s=1.

Fixed interval smoothing: FBF is faster than V1 A
comparison of ΔCV1 and ΔCFBF fixed-interval smoothing
algorithms suggests that V1 will require more computa-
tional time when R>1+2N /sn. In practical interval-
smoothing problems the ratio of ensemble to state size
(N /n) is typically very small so FBF becomes more
efficient very rapidly. The superior performance of FBF is
expected as V1 computation time grows quadratically with

Fig. 1 Comparison of V1 and FBF with ensemble Kalman filter
(EnKF). The error is computed between the analysis ensemble mean
and truth. Observations are spaced every five model steps, the
interval length is 100 and smoothed analyses are sought at every
model time step. As expected, V1 and FBF give identical estimates;
they only differ in computational requirements

Fig. 2 Comparison of V1-lag and FIFO-lag fixed-lag ensemble
smoothing estimates for different lag window lengths. The other
parameters are identical to those used in Fig. 1. V1-lag and FIFO-lag
give identical estimates although there can be numerical differences.
Short fixed lags give results closer to the ensemble Kalman filter,
while longer fixed lags give results closer to the fixed interval
smoother (compare to Fig. 1)

129

30

Quantifying Uncertainty

Costs of Inference, Toy Problem

the fixed-interval length, while the FBF computation time
grows linearly. Figure 3 indicates for the Lorenz-95
example that V1 smoothing takes much more time than
filtering, becoming prohibitively expensive for large
problems. By contrast, FBF smoothing adds only a modest
amount of computational effort to filtering, with the
computational time growing with interval length at
approximately the same rate as filtering alone.

Fixed-lag smoothing: FIFO-lag is faster than V1-lag,
beyond a certain lag length A comparison between FIFO-
lag and V1-lag suggests that V1-lag is more expensive
when L>1+3N /sn. This result is independent of the
interval length. Therefore, when longer lag lengths are
needed, it is preferable to use FIFO-lag. In our conserva-
tive Lorenz-95 example with s=1 and n=N, the threshold
lag is L=4, as a comparison of Figs. 4 and 5 shows.

As one of the motivations for fixed-lag smoothing as an
approximation to fixed-interval smoothing is computa-
tional savings, therefore a comparison between the two is
instructive. It is clear that V1-lag is less expensive than V1
for lag lengths smaller than the interval. A comparison of
ΔCV1-lag and ΔCFBF suggests that V1-lag is more
expensive when L>1+N /sn. When N /sn<1, FBF is faster
than V1-lag after a very short lag length and it is
unnecessary to use fixed-lag approximation for an inter-
val-smoothing problem purely for saving computational
time. In the Lorenz experiments, where N=n=100 and

s=1, V1-lag is more expensive than FBF when the lag
L>2, as seen in Fig. 4. A comparison of ΔCFIFO−lag and
ΔCFBF suggests that FIFO-lag is more expensive by a
fixed factor. Figure 5 indicates that for the Lorenz-95
experiment here FIFO-lag costs about 1.45 times more
than the FBF cost. As FIFO-lag consumes the same
memory as V1-lag, when memory is an issue, it may be
the preferred FIFO-lag approximation to FBF.

It should be emphasized here that in most practical
applications N /n<<1, but we have conservatively chosen
N /sn=1 for our experiments. In the former case, the
computational benefits of the proposed algorithms (FBF,
FIFO-lag) are even better. In the case where the number of
smoothed analysis times is less than the number of
observed time, i.e. s<1, these bounds can worsen, but not
in most practical situations the ratio N /sn can still be
expected to remain much smaller than 1.

Fig. 3 Computational times vs fixed interval length. a Model
propagation only. b Additional computational time (over model
propagation) for ensemble Kalman filtering. c Additional computa-
tional time (over model propagation and filtering) for V1 smoothing.
d Additional computational time (over model propagation and
filtering) for FBF smoothing. The additional cost of V1 smoothing
can be much more than filtering alone, while the additional cost of
FBF smoothing is minor. See text for detailed definition of each
computational time

1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

15

20

25

30

V1-lag--->
FBF

50
100

90

C
om
pu
ta
tio
na
lT
im
e
(s
)

10

35

Fig. 4 Computational times required to estimate model states
throughout fixed intervals of 100, 500, and 900 for FBF (fixed-
interval smoothing) and V1-lag (fixed-lag smoothing). The FBF
option (which does not depend on lag value) is shown at far left. V1-
lag option is shown for a range of lags from one through 13. FBF is
faster than V1-lag for lags greater than two

C
om
pu
ta
tio
na
lT
im
e
(s
)

1 2 3 4 5 6 7 8 9 10 11 12 13
0

2

4

6

8
10

12

FBF
100

900

500

100

FIFO-Lag

900

500

Fig. 5 Computational times required to estimate model states
throughout fixed intervals of 100, 500, and 900 for FBF (fixed-
interval smoothing) and FIFO-lag (fixed-lag smoothing). The FBF
option (which does not depend on lag value) is shown at far left. The
FIFO-lag option is shown for a range of lags from one through 13.
FBF is faster than FIFO-lag by a fixed factor. FIFO-lag computa-
tional time is nearly independent of lag (small fluctuations are
related to random differences in time required to perform singular
value decompositions at different lags)

130

Ensemble Filter and Smoother

Costs of Inference, Toy Problem

31

Quantifying Uncertainty

Ensemble Filter and Smoother

Fixed Lag

Fixed Lag Smoother

Fixed Lag

Fixed Lag Smoother

Lorenz-95 system (Lorenz and Emanuel 1998). The
continuous time Lorenz equations are:

dxi
dt

¼ "xi"2xi"1 þ xi"1xiþ1 " xi þ u; (30)

where i=1, ... n is cyclical (i.e. x0=xn, x−1=xn−1, xn+1=x1)
and can be interpreted as a surrogate spatial index. The
constant forcing term is u=8 in all simulations and
integrated forward using a fourth-order Runge–Kutta
scheme (Press et al. 1988).

For identical-twin experiments, a state vector of dimen-
sion n=100 is generated from a random zero-mean
Gaussian initial condition with a standard deviation of
2.0. The system is integrated for 8,192 steps to remove
transients, thence marking the true initial condition at the
beginning of the smoothing interval (t=0). The system is
integrated further until t=T and synthetic observations are
generated at specified measurement times by adding
uncorrelated zero-mean Gaussian noise with a standard
deviation of 0.2. A first guess of the true state at t=0 is
obtained by perturbing the true initial state vector by
uncorrelated zero-mean Gaussian with standard deviation
2.0. Then an ensemble of 100 random initial condition
samples is obtained by perturbing the first guess with 100
vectors of uncorrelated zero-mean Gaussian random
variables with a standard deviation of 1.0. The smoothing
algorithms in our experiments generate estimates at every
time step.

In the first experiment the system is integrated in the
interval [0, 1] with a dimensionless time step Δt=0.01,
giving M=100. The observation step is 0.05, giving r=5.
The state is observed at every other location so m=n/2=50.
Smoothed analyses are produced at every model time step,
therefore S=100 (the last time step cannot be smoothed),
and T=[0, 1, 2,..., 99]. Lorenz and Emanuel (1998)
associate the dimensionless time step 0.01 with a real time
of 1.2 h, implying that our measurement interval
corresponds to 6 h and our fixed-interval smoothing
window is 120 h. Figure 1 compares the estimation error
(over all states) obtained from an ensemble Kalman filter

(Evensen 2004) with those obtained from the V1 and FBF
ensemble smoothing algorithms. The error in each state is
the difference between the estimate (smoothed analysis
ensemble mean) and the known true values. V1 and FBF
are expected to have, and give, the same errors, which are
smaller than the ensemble filter errors at all times except
the endpoints.

Our second experiment uses the same inputs as the first
but considers the two fixed-lag smoothers. Figure 2
compares the root-mean-squared errors obtained from
V1-lag and FIFO-lag for fixed lag lengths of L=1, 5, 9,
and 13 measurements, corresponding to W=5, 25, 45 and
65 model time steps. In every case, the FIFO-lag and V1-
lag estimates and errors are the same, though some
variation could be expected in principle, due to the
numerical inversion in the FIFO-lag implementation.

We now turn to the computational performance of the
four smoothing algorithms. The unit costs defined earlier
can be written as Cu=nN

2, Cx=N
3 and Cx6∼3N3. Here, n is

the state size and N is the ensemble size (see Table 1 for a
list of symbols). The incremental costs of the four
algorithms are then: ΔCV1=nN

2sR(R+1)/2, ΔCFBF=
R(N3+snN2), ΔCV1-lag=LR sn N2 and ΔCFIFO−lag=
R(3N3+snN2). Please recall that R is the number of
observations over the interval, L is the lag length in
number of observations, and s is the ratio of the number of
smoothing analysis times to the number of observations on
the interval. We verify the complexity computations on the
Lorenz system, with n=100 and N=100. States are
completely observed at every time step so m=n and r=1.
Analyses are also produced at every model time step,
so s=1.

Fixed interval smoothing: FBF is faster than V1 A
comparison of ΔCV1 and ΔCFBF fixed-interval smoothing
algorithms suggests that V1 will require more computa-
tional time when R>1+2N /sn. In practical interval-
smoothing problems the ratio of ensemble to state size
(N /n) is typically very small so FBF becomes more
efficient very rapidly. The superior performance of FBF is
expected as V1 computation time grows quadratically with

Fig. 1 Comparison of V1 and FBF with ensemble Kalman filter
(EnKF). The error is computed between the analysis ensemble mean
and truth. Observations are spaced every five model steps, the
interval length is 100 and smoothed analyses are sought at every
model time step. As expected, V1 and FBF give identical estimates;
they only differ in computational requirements

Fig. 2 Comparison of V1-lag and FIFO-lag fixed-lag ensemble
smoothing estimates for different lag window lengths. The other
parameters are identical to those used in Fig. 1. V1-lag and FIFO-lag
give identical estimates although there can be numerical differences.
Short fixed lags give results closer to the ensemble Kalman filter,
while longer fixed lags give results closer to the fixed interval
smoother (compare to Fig. 1)

129

32

Quantifying Uncertainty

Ensemble Filter and Smoother

Fixed Lag: The Dumb Way
 Fixed Lag: The Dumb Way

the fixed-interval length, while the FBF computation time
grows linearly. Figure 3 indicates for the Lorenz-95
example that V1 smoothing takes much more time than
filtering, becoming prohibitively expensive for large
problems. By contrast, FBF smoothing adds only a modest
amount of computational effort to filtering, with the
computational time growing with interval length at
approximately the same rate as filtering alone.

Fixed-lag smoothing: FIFO-lag is faster than V1-lag,
beyond a certain lag length A comparison between FIFO-
lag and V1-lag suggests that V1-lag is more expensive
when L>1+3N /sn. This result is independent of the
interval length. Therefore, when longer lag lengths are
needed, it is preferable to use FIFO-lag. In our conserva-
tive Lorenz-95 example with s=1 and n=N, the threshold
lag is L=4, as a comparison of Figs. 4 and 5 shows.

As one of the motivations for fixed-lag smoothing as an
approximation to fixed-interval smoothing is computa-
tional savings, therefore a comparison between the two is
instructive. It is clear that V1-lag is less expensive than V1
for lag lengths smaller than the interval. A comparison of
ΔCV1-lag and ΔCFBF suggests that V1-lag is more
expensive when L>1+N /sn. When N /sn<1, FBF is faster
than V1-lag after a very short lag length and it is
unnecessary to use fixed-lag approximation for an inter-
val-smoothing problem purely for saving computational
time. In the Lorenz experiments, where N=n=100 and

s=1, V1-lag is more expensive than FBF when the lag
L>2, as seen in Fig. 4. A comparison of ΔCFIFO−lag and
ΔCFBF suggests that FIFO-lag is more expensive by a
fixed factor. Figure 5 indicates that for the Lorenz-95
experiment here FIFO-lag costs about 1.45 times more
than the FBF cost. As FIFO-lag consumes the same
memory as V1-lag, when memory is an issue, it may be
the preferred FIFO-lag approximation to FBF.

It should be emphasized here that in most practical
applications N /n<<1, but we have conservatively chosen
N /sn=1 for our experiments. In the former case, the
computational benefits of the proposed algorithms (FBF,
FIFO-lag) are even better. In the case where the number of
smoothed analysis times is less than the number of
observed time, i.e. s<1, these bounds can worsen, but not
in most practical situations the ratio N /sn can still be
expected to remain much smaller than 1.

Fig. 3 Computational times vs fixed interval length. a Model
propagation only. b Additional computational time (over model
propagation) for ensemble Kalman filtering. c Additional computa-
tional time (over model propagation and filtering) for V1 smoothing.
d Additional computational time (over model propagation and
filtering) for FBF smoothing. The additional cost of V1 smoothing
can be much more than filtering alone, while the additional cost of
FBF smoothing is minor. See text for detailed definition of each
computational time

1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

15

20

25

30

V1-lag--->
FBF

50
100

90

C
om
pu
ta
tio
na
lT
im
e
(s
)

10

35

Fig. 4 Computational times required to estimate model states
throughout fixed intervals of 100, 500, and 900 for FBF (fixed-
interval smoothing) and V1-lag (fixed-lag smoothing). The FBF
option (which does not depend on lag value) is shown at far left. V1-
lag option is shown for a range of lags from one through 13. FBF is
faster than V1-lag for lags greater than two

C
om
pu
ta
tio
na
lT
im
e
(s
)

1 2 3 4 5 6 7 8 9 10 11 12 13
0

2

4

6

8
10

12

FBF
100

900

500

100

FIFO-Lag

900

500

Fig. 5 Computational times required to estimate model states
throughout fixed intervals of 100, 500, and 900 for FBF (fixed-
interval smoothing) and FIFO-lag (fixed-lag smoothing). The FBF
option (which does not depend on lag value) is shown at far left. The
FIFO-lag option is shown for a range of lags from one through 13.
FBF is faster than FIFO-lag by a fixed factor. FIFO-lag computa-
tional time is nearly independent of lag (small fluctuations are
related to random differences in time required to perform singular
value decompositions at different lags)

130

33

Quantifying Uncertainty

Ensemble Filter and Smoother

Fixed Lag is FIFO

k+wN
As = Aa X 5jk k

j=k+1

= Aa
k Ck

= X 5−1Ck k Ck−1X 5k+w

34

Quantifying Uncertainty

Ensemble Filter and Smoother

Fixed Lag: The New Normal
 Fixed Lag: The New Normal

the fixed-interval length, while the FBF computation time
grows linearly. Figure 3 indicates for the Lorenz-95
example that V1 smoothing takes much more time than
filtering, becoming prohibitively expensive for large
problems. By contrast, FBF smoothing adds only a modest
amount of computational effort to filtering, with the
computational time growing with interval length at
approximately the same rate as filtering alone.

Fixed-lag smoothing: FIFO-lag is faster than V1-lag,
beyond a certain lag length A comparison between FIFO-
lag and V1-lag suggests that V1-lag is more expensive
when L>1+3N /sn. This result is independent of the
interval length. Therefore, when longer lag lengths are
needed, it is preferable to use FIFO-lag. In our conserva-
tive Lorenz-95 example with s=1 and n=N, the threshold
lag is L=4, as a comparison of Figs. 4 and 5 shows.

As one of the motivations for fixed-lag smoothing as an
approximation to fixed-interval smoothing is computa-
tional savings, therefore a comparison between the two is
instructive. It is clear that V1-lag is less expensive than V1
for lag lengths smaller than the interval. A comparison of
ΔCV1-lag and ΔCFBF suggests that V1-lag is more
expensive when L>1+N /sn. When N /sn<1, FBF is faster
than V1-lag after a very short lag length and it is
unnecessary to use fixed-lag approximation for an inter-
val-smoothing problem purely for saving computational
time. In the Lorenz experiments, where N=n=100 and

s=1, V1-lag is more expensive than FBF when the lag
L>2, as seen in Fig. 4. A comparison of ΔCFIFO−lag and
ΔCFBF suggests that FIFO-lag is more expensive by a
fixed factor. Figure 5 indicates that for the Lorenz-95
experiment here FIFO-lag costs about 1.45 times more
than the FBF cost. As FIFO-lag consumes the same
memory as V1-lag, when memory is an issue, it may be
the preferred FIFO-lag approximation to FBF.

It should be emphasized here that in most practical
applications N /n<<1, but we have conservatively chosen
N /sn=1 for our experiments. In the former case, the
computational benefits of the proposed algorithms (FBF,
FIFO-lag) are even better. In the case where the number of
smoothed analysis times is less than the number of
observed time, i.e. s<1, these bounds can worsen, but not
in most practical situations the ratio N /sn can still be
expected to remain much smaller than 1.

Fig. 3 Computational times vs fixed interval length. a Model
propagation only. b Additional computational time (over model
propagation) for ensemble Kalman filtering. c Additional computa-
tional time (over model propagation and filtering) for V1 smoothing.
d Additional computational time (over model propagation and
filtering) for FBF smoothing. The additional cost of V1 smoothing
can be much more than filtering alone, while the additional cost of
FBF smoothing is minor. See text for detailed definition of each
computational time

1 2 3 4 5 6 7 8 9 10 11 12 13
0

5

15

20

25

30

V1-lag--->
FBF

50
100

90

C
om
pu
ta
tio
na
lT
im
e
(s
)

10

35

Fig. 4 Computational times required to estimate model states
throughout fixed intervals of 100, 500, and 900 for FBF (fixed-
interval smoothing) and V1-lag (fixed-lag smoothing). The FBF
option (which does not depend on lag value) is shown at far left. V1-
lag option is shown for a range of lags from one through 13. FBF is
faster than V1-lag for lags greater than two

C
om
pu
ta
tio
na
lT
im
e
(s
)

1 2 3 4 5 6 7 8 9 10 11 12 13
0

2

4

6

8
10

12

FBF
100

900

500

100

FIFO-Lag

900

500

Fig. 5 Computational times required to estimate model states
throughout fixed intervals of 100, 500, and 900 for FBF (fixed-
interval smoothing) and FIFO-lag (fixed-lag smoothing). The FBF
option (which does not depend on lag value) is shown at far left. The
FIFO-lag option is shown for a range of lags from one through 13.
FBF is faster than FIFO-lag by a fixed factor. FIFO-lag computa-
tional time is nearly independent of lag (small fluctuations are
related to random differences in time required to perform singular
value decompositions at different lags)

130

35

Quantifying Uncertainty

Ensemble Filter and Smoother

We need to fix the multimedia!

Watch FLKSO.wmv!
Reading: Ravela and McLaughlin, Fast Ensemble Smoothing, Ocean
Dynamics, 2007
Schneider 2001: Analysis of incomplete climate data: Estimation of
mean values and covariance matrices and imputation of missing
values, Journal of Climate

36

Quantifying Uncertainty

Ensemble Filter and Smoother

Where does ensemble come from?

singular vectors

P0
f 1

••
•
• •• •

•
•

Pf

Low dimensional
Subspace
Span {u(0) . . . u(N)}

(0) ∂M (0)u0 → L0 ≈ → u1∂x x=x0

37

Quantifying Uncertainty

Ensemble Filter and Smoother

Things get tough... the Tough linearize

Thus

x1 = M(x0)

= M(x̄0 + x̃0)

= M(x̄0) +
∂M
∂x

x̃1 = Lx̃0

u(k)
1 = Lu(k)

0

X =x̄0

x̃0

38

Quantifying Uncertainty

∣∣∣∣

Ensemble Filter and Smoother

Eigenvalue Problem

Now,let C1 be a metric on vector u1 and let C0 be a metric on u0

< Lu0, C1Lu0 > < u0, L#C1Lu0 >
λ = =

< u0, C0u0 > < u0, C0u0 >

Maximize ratio for the kth perturbation: λk :

(k) (k)⇒ L#C1Lu0 = λk C0u0

Which is a generalized eigenvalue problem. Note that when C1 = I,
and C0 = P0

f then u(k) are leading directions of Pf
1 1

39

Quantifying Uncertainty

�

�

�

Ensemble Filter and Smoother

SV aproach

Notes

Adjoint & TLM not easy to calculate but robust.

L may be really large too! How can we reduce L?

Sensitivity to norm.

40

Quantifying Uncertainty

I

I

I

Ensemble Filter and Smoother

Breeding

••
•
•

Initial
Perturbation

•• •
•
•

Align with leading
directions of error growth
(Lyapunov vectors)

Qi+1Ri+1 = L Qi
TLMQ R decomposition

Q0 ≡ I Q0 → Qi · · · Qk

forgetsQ0

41

Quantifying Uncertainty

︸ ︷︷ ︸ ︸︷︷︸
︸︷︷︸

Ensemble Filter and Smoother

It’s easy to breed

1. Generate “random” initial perturbation
2. Let it grow; renormalize. (i.e propagate it)
3. Repeat

⇒ Breeding vectors
How many bred vectors ?
⇒ Size of L?

42

Quantifying Uncertainty

Ensemble Filter and Smoother

Ways to simplify Models for Uncertainty Propagation

1.	 Spectral Truncation: Find a few leading directions of Covariance
or Model and propagate them. Breed Vectors. Calculate a
reduced local linear model from ensemble.

2.	 Localization: Localize filtering and smoothing, use
scale-recursive decomposition.

3.	 Model Reduction: Reduce order of linearized model, construct a
reduced model from snapshots.

4.	 Sample Input-Output pairs to create a simple auxiliary model.

43

Quantifying Uncertainty

Ensemble Filter and Smoother

Model Reduction

Model Reduction
Structure

SVD Krylov

Nonlinear Linear

POD Balanced Truncation Lanczos
Empirical Grammian Hankel approx. Arnoldi etc.

SVD Krylov
44

Quantifying Uncertainty

Ensemble Filter and Smoother

Model Bypass – Non-Intrusive Approaches

X0 X1

C10C−1
00

Response Surface

M

Modeling, Polyno
mial Chaos.

45

Quantifying Uncertainty

Ensemble Filter and Smoother

Extra-Special on Covariance Representations
If we have a large covariance matrix C nonetheless representable by
computer and if we know it is a block-circulant matrix, then the
Fourier Transform can be used to diagonalize it:

D = UCUT (10)

For the unitary transform U, and D is diagonal. So, subsequent
processing with covariance is simplified, provided the model and
state can be also expressed in fourier domain.

Uδxn+1 = U
∂M

UT Uxn (11)
∂x

δξn+1 = LF δξn (12)
T C−1δx δxn = δξT D−1δξ (13)n n n

Spectral truncation to a few wave numbers in U also leads to a
reduced order model. Incidentally, similar process for wavelet
decomposition.
DO MATLAB EXAMPLE

46

Quantifying Uncertainty

�

Ensemble Filter and Smoother

Iterative calculation

If a covariance C has eigen vectors U and eigenvalues λ, i.e.

CU = UΛ, then we may recursively calucate the leading modes in U

because:

N

C = uk λkk uT
k (14)

k=1

Where U = [u1 . . . uN] and Λ = diag(λ11, . . . , λNN), in decreasing
order. Let C11 = C, and iteratively calculate:

for k = 1 . . . N (15)
{uk , λkk } = LeadingEig(Ckk) (16)
Ck+1k+1 = Ckk − uk λkk uk

T (17)
(18)

We need a procedure to calculate the leading Eigenvector and
Eigenvalue. 47

Quantifying Uncertainty

∑

�

�
�

Ensemble Filter and Smoother

Basic approach: Power Iteration
WARNING: There are many advanced methods for calculating eigen
vectors and eigen values iteratively and one should use them (e.g.
from ARPACK). Here, we provide an intuition for the process.
To calculate the leading vector of C, let us consider a vector in the
basis z, which we may expand as:

N

z = ck uk (19)
k=1

Now, we can write for the nth power of C:

N

Cnz = ck Cnuk (20)
k=1

N

= ck λ
n
kk uk (21)

k=1

48HOW?
Quantifying Uncertainty

∑

∑
∑

�

Ensemble Filter and Smoother

Power Iteration Continued

N

Cn ck λkk
n

z = c1λ
n (22)11(u1 + uk)λnc1 11k=2

Defining zn = Cnz, we note that

znn →∞⇒ → u1 (23)
||zn||

Algorithm PowerIteration(C):
zInitialize z; z ← ||z||

tIterate: t ← Cz, z ← ||t||

49

Quantifying Uncertainty

∑

Ensemble Filter and Smoother

LeadingEig(C)

u = PowerIteration(C) (24)
λ = uT Cu (25)

return(u, λ) end (26)

50

Quantifying Uncertainty

�

�

Ensemble Filter and Smoother

But the Covariance is too LARGE!

The preceding discussion is all fine, but often the dimensionality
is such that we have a really large covariance that cannot be
represented. Fortunately, many physical problems have only a
few modes of interest which we represent through data, e.g. an
ensemble.
So we begin with a skinny matrix X , and assume the covariance
is C = XX T . We would like a representation without explicitly
calculating C and exploiting the rank-deficiency due to a skinny
X .

51

Quantifying Uncertainty

I

I

�

�

�

�

�

Ensemble Filter and Smoother

Alternate form

Let X = USV T be the singular value decomposition and here
Sii ≥ Si+1i+1. Then C = UΛUT where Λ = S2

We will calculate only a few top left and right singular vectors and
singular values iteratively for a reduced order representation
Cd = Ud ΛdUd

T .
Note that because X is skinny, i.e. it is of size n × N with
N << n. We may further only pick d modes, d ≤ N.

We would like a representation of Cd without explicitly calculating

it.

Notice that D = X T X is a small matrix when X is skinny.

52

Quantifying Uncertainty

I

I

I

I

I

�

�

Ensemble Filter and Smoother

Alternate form

Let X = USV T be the singular value decomposition and here
Sii ≥ Si+1i+1. Then D = X T X = V ΛV T where Λ = S2, a small
matrix.
We calculate the eigen vectors and eigen values of D recursively.
Let D1 = D; and for k = 1 . . . d

vk = PowerIteration(Dk) (27)
λkk = vk

T Dk vk (28)
Dk+1 = Dk − vk λkk vk

T (29)
√

Noting that Sd = Λd , we obtain Ud as a skinny nxd matrix:

= XVdS−1 (30)Ud d

Store Ud and Λd and use them to calculate the norm in an
application. DEMO IN MATLAB 53

Quantifying Uncertainty

I

I

Ensemble Filter and Smoother

Applicable to Processes

∂θ
(x , t) = F θ(x , t) → System

∂t
∂θ

R(θ) = − F θ → Residual
∂t

θ = uη(t) → KLT (POD or Krylov)

uT R = 0 → Galerkin Projection
∂η

= uT Fuη → ROM
∂t

54

Quantifying Uncertainty

MIT OpenCourseWare
http://ocw.mit.edu

12.S990 Quantifying Uncertainty
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Ensemble Filter and Smoother

